Physics Tomorrow Letters

ELIS CONTE

RESEARCH | THEORETICAL PHYSICS

Author's signature

BIBLIOGRAPHY
The author, born in 1946, has been Professor of Theoretical Physics and Director of the School of International Studies on Applied Theoretical and non Linear Methodologies of Physics in Bari, Italy.

To cite this article

Elio Conte, "On Wave Function Collapse in Quantum Mechanics in the case of a Spin system having three anticommuting operators", PTL theoretical physics, vol. 4, no. 4, (Oct. 2019).

On Wave Function Collapse in Quantum Mechanics in the case of a Spin system having three anticommuting operators

Elio Conte
School of Advanced International Studies on Applied Theoretical and Non Linear Methodologies of Physics Bari, Italy
elio.conte@fastwebnet.it

Abstract

Ve use a two states quantum spin system S, and thus considering the particular case of three anticommuting elements and the measurement of e_{3}. We evidence that, during the wave collapse, we have a transition of standard commutation relation of the spin to new commutation relations and this occurs during the interaction of the S system with the macroscopic measurement system M . The reason to accept such view point is that it causes the destruction of the interferential factors and of the fermion creation and annihilation operators of the S system without recourse to further elaborations based on the use of Hamiltonians or other methods. By this formulation we propose a new method in attempting to solve the problem of wave function collapse. The concept of Observable, in use in standard quantum mechanics, is resolved in an abstract entity to which is connected a linear hermitean operator that signs mathematically the operation that we must perform on the wave function in order to obtain the potential and possible values of the observable. It does not commute with a number of other operators characterizing the system and the non commuting rules have a fundamental role in quantum mechanics. They have a logic that must be analyzed in each phase of the non measuring and the measuring processes. When we consider the dynamics of wave function collapse we must account that the observed Observable becomes a number, with proper unity of measurements ,during the measurement, thus the linear hermitean operator to which is connected before the measurement, disappears and in its place it appears a new operator that maintain the non commutativity with the other operators to which the old and disappeared operator was connected.

Keys: foundations of quantum mechanics; quantum collapse; commutation relations of Pauli matrices.

1 Introduction

In ninety years since its beginnings, quantum mechanics has had great functional and theoretical success leaving little reason to doubt its intrinsic validity. Nevertheless, we cannot ignore that some questions concerning the foundations of this theory remained unsolved, and a historic debates among scientists arose and deeply influenced the early development of the theory. The first important question concerns the problem of the wave-function collapse by measurement.
Its solution would be of relevant significance because it would provide us with a self-consistent formulation of the theory, which presently depends on the von Neumann postulates that have been added from the outside to the body of the theory.
For a complete examination of the actual problems, as they are resolved to do, we refer the reader to the several reviews that may be found in pertinent literature [1,2,8,9,10,11,12,18,19,20].
Consider the measurement of a given observable F on a quantum-mechanical system S that is in a normalized superposition of states
$\psi=\sum_{i} c_{i} \varphi_{i} \quad ; \quad c_{i}=\left(\varphi_{i}, \psi\right) \quad ; \quad \sum_{i}\left|c_{i}\right|^{2}=1 ;$
where φ_{i} is a normalized eigenstate of F, relative to an eigenvalue $\lambda_{i}, F \varphi_{i}=\lambda_{i} \varphi_{i},\left(\varphi_{i}, \varphi_{j}\right)=\delta_{i j}$.
The probability of finding the eigenvalue λ_{i} during the measurement is $\left|c_{i}\right|^{2}$, the corresponding eigenstate is φ_{i} and during the measurement the wave function ψ is subjected to the transition $\psi \rightarrow \varphi_{i}$ characterizing the completed collapse.
The density matrix approach as it was initiated by von Neumann is
$\rho_{S}=|\psi\rangle\langle\psi|=\sum_{i} \sum_{j} c_{i} c_{j}^{*}\left|\varphi_{i}\right\rangle\left\langle\varphi_{j}\right| \rightarrow \rho_{S, F_{i k}}=\sum_{k}\left|\varphi_{k}\right\rangle\left\langle\varphi_{k}\right|$.
Usually, we consider a macroscopic measuring device M and we postulate that the states of M entangle with those of S
$\rho=\rho_{S} \otimes \rho_{M}=\sum_{i} \sum_{j} c_{i} c_{j}^{*}\left|\varphi_{i}\right\rangle\left\langle\varphi_{j}\right| \otimes \rho_{M} \rightarrow \rho_{S, M_{t}}=\sum_{k}\left|c_{k}\right|^{2}\left|\varphi_{k}\right\rangle\left\langle\varphi_{k}\right| \otimes \rho_{M(k)_{t}}$
If the system is not destroyed by the measurement, and if the interaction fits into the so called measurement of the first kind, then the quantum state after the measurement will be the eigenstate associated with the measurement outcome, or more generally (to include degenerancies), the normalized projection of the original state onto the eigensubspace associated with the outcome. This rule is known as the projection postulate. It originated with Dirac and von Neumann [17], and was later formalized in degenerate cases by Luders and Ludwig [14,15].
Consider S to be a quantum two states system. The complete phase-damping by using projection postulate gives
$D(\rho)=|0\rangle\langle 0| \rho|0\rangle\langle 0|+|1\rangle\langle 1| \rho|1\rangle\langle 1|$
Generally speaking, we have a set of mutually orthogonal projectors ($P_{1}, P_{2}, \ldots \ldots \ldots ., P_{N}$) which complete to unity, $P_{i} P_{j}=\delta_{i j} P_{j}, \sum_{i} P_{i}=1$, the result (i) is obtained with probability $p_{i}=\langle\psi| P_{i}|\psi\rangle$ and the state collapses to
$\frac{1}{\sqrt{p_{i}}} P_{i}|\psi\rangle$.
It is known that quantum mechanics has some peculiar features that are missing in the counterpart of classical physics. Two basic features are quantum interference and the collapse. The approach given in such introduction is the classical one of quantum mechanics and in years of research activity it has not given satisfactory results in the field of the quantum measurements. This is an indication that has arrived the time to modify such approach introducing the new quantum foundation that accounts also for the non commutativity of all the operators involved during the measurement. New approaches are emerging in literature [21] and this is an indication that new reasonings are required. We give here the treatment of a new formalization for the case of a quantum system having three anticommuting elements.
Starting with 2009 [5]-[7] our tentative approach was to use the Clifford algebra with the aim to construct a bare bone skeleton of quantum mechanics but giving collapse. We will consider here basic features but remaining fully in the aim of the foundations of quantum mechanics and thus without recurring to the Clifford algebra.

2 Theoretical Elaboration

Consider the measurement of e_{3} spin z-component. We have three operators, e_{1}, e_{2}, and e_{3} that satisfy the relation

$$
\begin{equation*}
e_{j} e_{k}+e_{k} e_{j}=2 \delta_{j k} \quad \text { for } \mathrm{s} \tag{5}
\end{equation*}
$$

with the following basic relations
$e_{\lambda}^{2}=1$
and
$e_{j} e_{k}=-e_{k} e_{j}$ for $j \neq k$
In matrix form we have that

$$
e_{1}=\left(\begin{array}{ll}
0 & 1 \tag{8}\\
1 & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), e_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

These basic operators, e_{i}, with $i=1,2,3$, satisfy the following relations
a) it exists the scalar square for each basic operator:
$e_{1} e_{1}=k_{1}, e_{2} e_{2}=k_{2}, e_{3} e_{3}=k_{3}$ with $k_{i} \in \mathfrak{R}$.
In particular we have also the unit element, e_{0}, such that,
$e_{0} e_{0}=1$, and $e_{0} e_{i}=e_{i} e_{0}$
b) The basic elements e_{i} are anticommuting operators, that is to say

$$
\begin{equation*}
e_{1} e_{2}=-e_{2} e_{1}, \quad e_{2} e_{3}=-e_{3} e_{2}, e_{3} e_{1}=-e_{1} e_{3} . \tag{10}
\end{equation*}
$$

Theorem 1

Assuming the two postulates given in (a) and (b) with $k_{i}=1$, the following commutation relations hold for such algebra :
$e_{1} e_{2}=-e_{2} e_{1}=i e_{3} ; e_{2} e_{3}=-e_{3} e_{2}=i e_{1} ; e_{3} e_{1}=-e_{1} e_{3}=i e_{2} ; i=e_{1} e_{2} e_{3},\left(e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=1\right)$
Proof.
Consider the general multiplication of the three basic operators e_{1}, e_{2}, e_{3}, using scalar coefficients $\omega_{k}, \lambda_{k}, \gamma_{k}$ pertaining to some field:
$e_{1} e_{2}=\omega_{1} e_{1}+\omega_{2} e_{2}+\omega_{3} e_{3} \quad ; e_{2} e_{3}=\lambda_{1} e_{1}+\lambda_{2} e_{2}+\lambda_{3} e_{3} ;$
$e_{3} e_{1}=\gamma_{1} e_{1}+\gamma_{2} e_{2}+\gamma_{3} e_{3}$.

Let us introduce left and right alternation: for any (i,j), associativity exists $e_{i} e_{i} e_{j}=\left(e_{i} e_{i}\right) e_{j}$ and $e_{i} e_{j} e_{j}=e_{i}\left(e_{j} e_{j}\right)$ that is to say
$e_{1} e_{1} e_{2}=\left(e_{1} e_{1}\right) e_{2} \quad ; \quad e_{1} e_{2} e_{2}=e_{1}\left(e_{2} e_{2}\right) \quad ; \quad e_{2} e_{2} e_{3}=\left(e_{2} e_{2}\right) e_{3} ; \quad e_{2} e_{3} e_{3}=e_{2}\left(e_{3} e_{3}\right) \quad ; \quad e_{3} e_{3} e_{1}=\left(e_{3} e_{3}\right) e_{1} ;$ $e_{3} e_{1} e_{1}=e_{3}\left(e_{1} e_{1}\right)$.

Using the (11) in the (12) it is obtained that
$k_{1} e_{2}=\omega_{1} k_{1}+\omega_{2} e_{1} e_{2}+\omega_{3} e_{1} e_{3} ; \quad k_{2} e_{1}=\omega_{1} e_{1} e_{2}+\omega_{2} k_{2}+\omega_{3} e_{3} e_{2} ;$
$k_{2} e_{3}=\lambda_{1} e_{2} e_{1}+\lambda_{2} k_{2}+\lambda_{3} e_{2} e_{3} ; k_{3} e_{2}=\lambda_{1} e_{1} e_{3}+\lambda_{2} e_{2} e_{3}+\lambda_{3} k_{3} ;$
$k_{3} e_{1}=\gamma_{1} e_{3} e_{1}+\gamma_{2} e_{3} e_{2}+\gamma_{3} k_{3} ; \quad k_{1} e_{3}=\gamma_{1} k_{1}+\gamma_{2} e_{2} e_{1}+\gamma_{3} e_{3} e_{1}$.
From the (13), using the assumption (b), we obtain that
$\frac{\omega_{1}}{k_{2}} e_{1} e_{2}+\omega_{2}-\frac{\omega_{3}}{k_{2}} e_{2} e_{3}=\frac{\gamma_{1}}{k_{3}} e_{3} e_{1}-\frac{\gamma_{2}}{k_{3}} e_{2} e_{3}+\gamma_{3} ;$
$\omega_{1}+\frac{\omega_{2}}{k_{1}} e_{1} e_{2}-\frac{\omega_{3}}{k_{1}} e_{3} e_{1}=-\frac{\lambda_{1}}{k_{3}} e_{3} e_{1}+\frac{\lambda_{2}}{k_{3}} e_{2} e_{3}+\lambda_{3} ;$
$\gamma_{1}-\frac{\gamma_{2}}{k_{1}} e_{1} e_{2}+\frac{\gamma_{3}}{k_{1}} e_{3} e_{1}=-\frac{\lambda_{1}}{k_{2}} e_{1} e_{2}+\lambda_{2}+\frac{\lambda_{3}}{k_{2}} e_{2} e_{3}$
We have that it must be
$\omega_{1}=\omega_{2}=\lambda_{2}=\lambda_{3}=\gamma_{1}=\gamma_{3}=0$
and
$-\lambda_{1} k_{1}+\gamma_{2} k_{2}=0 \quad \gamma_{2} k_{2}-\omega_{3} k_{3}=0 \quad \lambda_{1} k_{1}-\omega_{3} k_{3}=0$
The following set of solutions is given:
$k_{1}=-\gamma_{2} \omega_{3}, k_{2}=-\lambda_{1} \omega_{3}, k_{3}=-\lambda_{1} \gamma_{2}$
That is to say
$\omega_{3}=\lambda_{1}=\gamma_{2}=i$
In this manner, as a theorem, the existence of such operators is proven. The basic features are given in the following manner
$e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=1 ; e_{1} e_{2}=-e_{2} e_{1}=i e_{3} ; e_{2} e_{3}=-e_{3} e_{2}=i e_{1} ; e_{3} e_{1}=-e_{1} e_{3}=i e_{2} ; i=e_{1} e_{2} e_{3}$
Note that the $e_{i}(i=1,2,3)$ have an intrinsic potentiality that is to say an ontic potentiality or equivalently an irreducible intrinsic indetermination. Since $e_{i}^{2}=1(i=1,2,3)$, the numerical value +1 or the numerical value -1 are potentially possible . Such two alternatives (+1 and -1) both coexist ontologically and this potential possibility intrinsically travels in each possible formal application of this operators.

Consider now the following new operators
$e_{1}^{2}=e_{2}^{2}=1 ; \quad \boldsymbol{i}^{2}=-1 ;$
$e_{1} e_{2}=\boldsymbol{i}, e_{2} e_{1}=-\boldsymbol{i}, \quad e_{2} \boldsymbol{i}=-e_{1}, \quad \boldsymbol{i} e_{2}=e_{1}, \quad e_{1} \boldsymbol{i}=e_{2}, \quad \boldsymbol{i} e_{1}=-e_{2}$
and we will verify that the (21) holds if the result of the measurement has given the value +1 for e_{3}.

We have instead
$e_{1}^{2}=e_{2}^{2}=1 ; \boldsymbol{i}^{2}=-1 ;$
$e_{1} e_{2}=-\boldsymbol{i}, e_{2} e_{1}=\boldsymbol{i}, e_{2} \boldsymbol{i}=e_{1}, \boldsymbol{i} e_{2}=-e_{1}, e_{1} \boldsymbol{i}=-e_{2}, \boldsymbol{i} e_{1}=e_{2}$
and we will verify that the (22) holds if the result of the measurement has given the value -1 for e_{3}

Theorem 2

Assuming the relations given in (20), having $k_{1}=1, k_{2}=1, k_{3}=-1$, the following commutation rules hold :
$e_{1}^{2}=e_{2}^{2}=1 ; i^{2}=-1 ;$
$e_{1} e_{2}=i, e_{2} e_{1}=-i, e_{2} i=-e_{1}, i e_{2}=e_{1}, e_{1} i=e_{2}, i e_{1}=-e_{2}$
Proof
To give proof, rewrite the (11a) in our case, and perform step by step the same calculations of the previous proof, we arrive to the solutions of the corresponding homogeneous algebraic system that in this new case are given in the following manner:
$k_{1}=-\gamma_{2} \omega_{3} ; k_{2}=-\lambda_{1} \omega_{3} ; k_{3}=-\lambda_{1} \gamma_{2}$
where this time it must be $k_{1}=k_{2}=+1$ and $k_{3}=-1$. It results
$\lambda_{1}=-1 ; \gamma_{2}=-1 ; \omega_{3}=+1$
and the proof is given.
The content of the theorem 2 is thus established. When we attribute to e_{3} the numerical value +1 , we pass from the previous one relations
$e_{1} e_{2}=-e_{2} e_{1}=i e_{3} ; e_{2} e_{3}=-e_{3} e_{2}=i e_{1} ; e_{3} e_{1}=-e_{1} e_{3}=i e_{2} ; i=e_{1} e_{2} e_{3},\left(e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=1\right)$
to the following new basic rules:
$e_{1}^{2}=e_{2}^{2}=1 ; i^{2}=-1 ;$
$e_{1} e_{2}=i, e_{2} e_{1}=-i, e_{2} i=-e_{1}, i e_{2}=e_{1}, e_{1} i=e_{2}, i e_{1}=-e_{2}$
When we attribute to e_{3} the numerical value of -1 , we have the new fundamental relations
$e_{1}^{2}=e_{2}^{2}=1 ; i^{2}=-1 ;$
$e_{1} e_{2}=-i, e_{2} e_{1}=i, e_{2} i=e_{1}, i e_{2}=-e_{1}, e_{1} i=-e_{2}, i e_{1}=e_{2}$
To give proof, consider the solutions of the (24) that are given in this new case by
$\lambda_{1}=+1 ; \gamma_{2}=+1 ; \omega_{3}=-1$
and the proof is given.
The content of the theorem n. 2 is thus established. When we attribute to e_{3} the numerical value -1 , we pass to new commutation relations with the following new basic rules:
$e_{1}^{2}=e_{2}^{2}=1 ; i^{2}=-1 ;$
$e_{1} e_{2}=-i, e_{2} e_{1}=i, e_{2} i=e_{1}, i e_{2}=-e_{1}, e_{1} i=-e_{2}, i e_{1}=e_{2}$
In the case of previous measurement we have that the imaginary unit i has its mathematical representation by
e_{1}, e_{2}, e_{3}, by the following relation $i=e_{1} e_{2} e_{3}$. In the case of $e_{3} \rightarrow+1$ measurement we have instead
$i=e_{1} e_{2}$, and , in the case of $e_{3} \rightarrow-1$ measurement, we have $i=-e_{1} e_{2}$. In both cases \boldsymbol{i} becomes an operator that completes the triplet with e_{1} and e_{2} while, before the measurement, it is the scalar $i=e_{1} e_{2} e_{3}$.

In a similar way, proofs may be obtained when we consider the cases attributing numerical values (± 1) to e_{1} or to e_{2}.
Consider the previous two states of system S with its proper representation in Hilbert space.
The complex coefficients $c_{i}(i=1,2)$ are the well known probability amplitudes for the considered quantum state

$$
\begin{equation*}
\psi=\binom{c_{1}}{c_{2}} \quad \text { and } \quad\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}=1 \tag{30}
\end{equation*}
$$

For a pure state in quantum mechanics it is $\rho^{2}=\rho$. We have a corresponding Clifford algebraic member that is given in the following manner

$$
\begin{equation*}
\rho_{S}=a+b e_{1}+c e_{2}+d e_{3} \tag{31}
\end{equation*}
$$

with
$a=\frac{\left|c_{1}\right|^{2}}{2}+\frac{\left|c_{2}\right|^{2}}{2}, b=\frac{c_{1}^{*} c_{2}+c_{1} c_{2}^{*}}{2}, c=\frac{i\left(c_{1} c_{2}^{*}-c_{1}^{*} c_{2}\right)}{2}, \quad d=\frac{\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}}{2}$
In our old scheme a theorem may be demonstrated in Clifford algebra [3,4]. It is that
$\rho_{S}^{2}=\rho_{S} \leftrightarrow a=\frac{1}{2}$ and $a^{2}=b^{2}+c^{2}+d^{2} \quad$ and $\operatorname{Tr}(\rho)=1$

Let us write again the state of the two state spin z -component quantum system S with connected quantum observable $S_{3} \rightarrow e_{3}$. We have
$|\psi\rangle=c_{1}\left|\varphi_{1}\right\rangle+c_{2}\left|\varphi_{2}\right\rangle, \varphi_{1}=\binom{1}{0}, \varphi_{2}=\binom{0}{1}$
and
$\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}=1$
As we know, the density matrix of such system is easily written
$\rho=a+b e_{1}+c e_{2}+d e_{3}$
with
$a=\frac{\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}}{2}, b=\frac{c_{1}^{*} c_{2}+c_{1} c_{2}^{*}}{2}, c=\frac{i\left(c_{1} c_{2}^{*}-c_{1}^{*} c_{2}\right)}{2}, d=\frac{\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}}{2}$
where in matrix notation, e_{1}, e_{2}, and e_{3} are the well known Pauli matrices
$e_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), e_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), e_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
The (31) and (34) coincide .
Write the (34) in the two forms.
$\rho_{S}=\frac{1}{2}\left(\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}\right)+\frac{1}{2}\left(c_{1} c_{2}^{*}\right)\left(e_{1}+e_{2} i\right)+\frac{1}{2}\left(c_{1}^{*} c_{2}\right)\left(e_{1}-i e_{2}\right)+\frac{1}{2}\left(\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right) e_{3}$
and
$\rho_{S}=\frac{1}{2}\left(\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}\right)+\frac{1}{2}\left(c_{1} c_{2}^{*}\right)\left(e_{1}+i e_{2}\right)+\frac{1}{2}\left(c_{1}^{*} c_{2}\right)\left(e_{1}-e_{2} i\right)+\frac{1}{2}\left(\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right) e_{3}$
The (37) and (38) contain the following interference terms.
$\frac{1}{2}\left(c_{1} c_{2}^{*}\right)\left(e_{1}+e_{2} i\right)+\frac{1}{2}\left(c_{1}^{*} c_{2}\right)\left(e_{1}-i e_{2}\right)$
and
$\frac{1}{2}\left(c_{1} c_{2}^{*}\right)\left(e_{1}+i e_{2}\right)+\frac{1}{2}\left(c_{1}^{*} c_{2}\right)\left(e_{1}-e_{2} i\right)$

We may write (38) in the following terms
$\rho_{S}=\rho_{1 S}+\rho_{S, \text { int } .}$
where
$\rho_{1 S}=\rho_{S}=\frac{1}{2}\left(\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}\right)+\frac{1}{2}\left(\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right) e_{3}$
and
$\rho_{S, \text { int }}=\frac{1}{2}\left(c_{1} c_{2}^{*}\right)\left(e_{1}+e_{2} i\right)+\frac{1}{2}\left(c_{1}^{*} c_{2}\right)\left(e_{1}-i e_{2}\right)$
or equivalently
$\rho_{S, \text { int }}=\frac{1}{2}\left(c_{1} c_{2}^{*}\right)\left(e_{1}+i e_{2}\right)+\frac{1}{2}\left(c_{1}^{*} c_{2}\right)\left(e_{1}-e_{2} i\right)$
and respectively for the (37) and the (38).
The mechanism that induces the collapse of the wave function is now evident. During the interaction of the system S with the macroscopic apparatus M the previous interference terms are destroyed. It never can happen until we assume that in the $(S+M)$ interaction and during such coupling $(S+M)$, the system undergoes an operator transition. If, probabilistically speaking, the macroscopic instrument reads $S_{3}=+\frac{\hbar}{2}$, it means that the (37) has prevailed. If instead the macroscopic instrument reads $S_{3}=-\frac{\hbar}{2}$, it means that the (38) has prevailed.

In the first case the basic commutation rules that hold are those given in (26),
$e_{1} e_{2}=\boldsymbol{i}, e_{2} e_{1}=-\boldsymbol{i}$,
$e_{2} \boldsymbol{i}=-e_{1}, \boldsymbol{i} e_{2}=e_{1}, e_{1} \boldsymbol{i}=e_{2}, \boldsymbol{i} e_{1}=-e_{2}$
The density matrix becomes
$\rho_{S}{ }^{\prime}+1=\rho_{1 S}+\rho_{S, \text { int } .}$
with
$\rho_{S, \text { int }}=\frac{1}{2}\left(c_{1} c_{2}^{*}\right)\left(e_{1}+e_{2} \boldsymbol{i}\right)+\frac{1}{2}\left(c_{1}^{*} c_{2}\right)\left(e_{1}-\boldsymbol{i} e_{2}\right)=0$
In the second case the basic commutation rules that hold are those given in (29),
$e_{1} e_{2}=-\boldsymbol{i}, e_{2} e_{1}=\boldsymbol{i}, e_{2} \boldsymbol{i}=e_{1}, \boldsymbol{i} e_{2}=-e_{1}, e_{1} \boldsymbol{i}=-e_{2}, i e_{1}=e_{2}$
The density matrix becomes
$\rho_{S,-1}=\rho_{1 S}+\rho_{S, \text { int } .}$
with
$\rho_{S, \text { int }}=\frac{1}{2}\left(c_{1} c_{2}^{*}\right)\left(e_{1}+\boldsymbol{i} e_{2}\right)+\frac{1}{2}\left(c_{1}^{*} c_{2}\right)\left(e_{1}-e_{2} \boldsymbol{i}\right)=0$

The macroscopic apparatus has the task to differentiate $\rho_{S,+1}$ from $\rho_{S,-1}$ destroying interference.
There is another important feature in such mechanism. The basic matrix density expression, written previously in equivalent manner in the (37) and (38), contains two algebraic elements that in quantum mechanics relate the Fermion annihilation and creation operators. In fact they are explicitly expressed in such basic matrix density expression
$\rho_{S}=\frac{1}{2}\left(\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}\right)+\frac{1}{2}\left(c_{1} c_{2}^{*}\right)\left(e_{1}+e_{2} i\right)+\frac{1}{2}\left(c_{1}^{*} c_{2}\right)\left(e_{1}-i e_{2}\right)+\frac{1}{2}\left(\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right) e_{3}$

They act before of the interaction of S with M. When the system S interacts with M, the new commutation relations, the (45) or the (49), act and they completely cancel the presence of the algebraic terms corresponding to the two fermion creation and annihilation operators. Quantum collapse requires the cancellation of such two operators and it happens during the transition from previous measurement to during the measurement. This is of course at the basis of the mechanism of the ($S+M$) interaction.

3. Conclusion

We have given indication of the mechanism of quantum collapse in quantum mechanics for a quantum system having only three anticommuting elements. The central approach is that during the interaction of the given quantum system with the macroscopic apparatus, we have a transition from the basic and standard commutation relations among the well known Pauli matrices to new commutation relations. This must be a basic feature of quantum collapse and this is the basic reason because it is so difficult to construct a real theory of wave function collapse. In this case the linear hermitean operator connected to the given Observable disappears because the Observable becomes a truly physical quantity in its proper unity of measurement but in its place a new operator appears that does not commute with the old operators of the system and not commuting with the operator that has disappeared. We have reached this result by using the Clifford algebra in an old paper and we reach the same result now, in this paper, using only the algebra of the linear hermitean operators.

References

[1] H. Araki, "A remark on Machida-Namiki theory of measurement", Prog. Theor. Phys. 64, (1980). 719
[2] H. Araki, " Fundamental Aspects of Quantum Theory". V. Gorini A. Frigerio editions ,(1986) Plenum, New York.
[3] E. Conte, "An example of wave function collapse", Phys. Essays 6 (1996) 4.
[4] E. Conte "Biquaternion quantum mechanics" (2001) Pitagora press, Italy.
[5] E. Conte, " A proof of von Neumann Postulates in quantum mechanics, Quantum Theory, Reconsideration of Foundations5", AIP Conference Proceedings,(2009) 201.
[6] Conte, E. , "A demonstration of von Neumann postulates in quantum measurements using two theorems of Clifford algebra", International Journal of Theoretical Physics 49 (2010) 587.
[7] E. Conte, "An investigation on the basic conceptual foundations of quantum mechanics by using the Clifford algebra", Advanced Studies in Theoretical Physics 5(2011) 485.
[8] B. D'Espagnat, (1976): "Conceptual Foundations of Quantum Mechanics",(1976): 2nd ed. Benjamin, Elmsford.
[9] A. I. Fine, "The two problems of quantum measurement". Suppes, P., Henkin, L., Joja, A., Moisil, G.C. (eds.) 19 Logic, Methodology and Philosophy of Science IV (1973) North-Holland, Amsterdam.
[10] G. C. Ghiradi et al. , "Unified dynamics for microscopic and macroscopic systems", Phys. Rev. D34 (1986), 470.
[11] G.C. Ghiradi et al.,"Unified dynamics for microscopic and macroscopic systems". Phys. Rev. D36, (1987): 3287-3289.
[12] G.C. Ghirardi et al., "Describing the macroscopic world: Closing the circle within the dynamical reduction program",Found. Phys. 20 (1990) 1271.
[13] Y.]Ilamed, N. Salingaros, "On the algebra of three anticommuting elements", J. Math. Phys. 22 (1981) 2091.
[14] G. Ludwig, G., "Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien", Zeitschrift für Physik 181 (1964) 233.
[15] G. Ludwig, G. "Deutung des Begriffs Physikalische Theorie" und Axiomatische Grundlegung der Hilbert raumstruktur der Quantenmechanik durch Hauptsätze des Messens, (1970) Springer, Berlin.
[16] G. Sussmann, "An analysis of measurement". In: Korner, S. (ed.) Observation and Interpretation in the Philosophy of Physics, G. (1957) Dover, New York.
[17] J. Von Neumann, "Die Mathematische Grundlagen der Quantenmechanik", (1932): Springer, Berlin.
Wheeler, J.A., Zurek, W.H. (1983): (eds.): "Quantum Theory and Measurement". Princeton University Press, Princeton.
[18] H. Zurek, "Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?", Phys. Rev. D24 (1981)1516.
[19] H. Zurek, H. ,"Environment-induced superselection rules", Phys. Rev. D26 (1982) 1862.
[20] H. Zurek, H. (1991): "Decoherence and the transition from quantum to classical", Phys. Today 44 (1991) 36.
[21] G. Kirchmair et al., "State-independent experimental test of quantum contextuality", Nature (London) July 23,(2009).

