top of page
ORCID_iD.svg.png

Locked

Tphysicsletters/vol-10/no-x/Underlying Structure-Activity Correlations of 2D Layered Transition Metal Dichalcogenides-Based Electrocatalysts for Boosted Hydrogen Generation

Theoretical Physics Letters.png
10.1490/100236.980ptl

Thursday, September 30, 2021 at 1:30:00 PM UTC

Request Open

Article Rating by Publisher
8
Theoretical Physics
Article Rating by Readers
8.6

Underlying Structure-Activity Correlations of 2D Layered Transition Metal Dichalcogenides-Based Electrocatalysts for Boosted Hydrogen Generation

Zhexu Xi

Theoretical Physics Letters (IF 3.012)

2021 ° 30(09) ° 09-15

https://www.wikipt.org/tphysicsletters

DOI: https://doi.wikipt.org/10/1490/100236/980ptl

Acknowledgment

Not Applicable

Unlock Only

Changeover the Schrödinger Equation

This option will drive you towards only the selected publication. If you want to save money then choose the full access plan from the right side.

Unlock all

Get access to entire database

This option will unlock the entire database of us to you without any limitations for a specific time period.
This offer is limited to 100000 clients if you make delay further, the offer slots will be booked soon. Afterwards, the prices will be 50% hiked.

Newsletters
Abstract
Hydrogen fuel is an ideal energy source to replace the traditional fossil fuels because of its high energy density and renewability. Electrochemical water splitting is alsoregarded as a sustainable, cleaning and eco-friendly method for hydrogen evolution reaction(HER), but a cheaper, earth-abundant and similarly efficient alternative to Pt as an HERcatalyst cannot still be discovered. Recently, 2D Transition Metal Dichalcogenides (TMDs) aredemonstrated to greatly enhance the HER activity. Herein, our work provides an insight intothe recent advances in 2D TMDs-based HER following the composition-characterisation-construction guideline. After the background introduction, several research outputs based on 2D TMDs as well as the comprehensive analysis on the modulation strategies of 2D TMDs, for the purposes of increasing the active sites, improvingthe intrinsic activity and altering the electronic states. Finally, the future opportunities andchallenges of 2D TMDs electrocatalysts are briefly featured.

Introduction
Nowadays, demand for usable energy worldwide has dramatically risen due to rapid growth in population, which inevitably triggers the overuse of traditional fossil fuels as well as a series of environmental issues [1, 2]. Accordingly, it is of great importance to find another, less polluting energy source to tackle the current problems. Hydrogen (H2), owing to its zero-polluting combustion byproduct (water) and high energy density, holds high potential as an alternative to fossil energy [3] . For H2 production pathways, water electrolysis (electrocatalytic water splitting) is also known as a renewable and clean industrial approach [4] . Currently, the best electrocatalyst for the Hydrogen Evolution Reaction (HER) is Pt, which markedly minimizes the overpotential and exhibits optimal catalytic activity. However, the high cost and limited reserves of Pt seriously restrict the further development of Pt-based catalysts [3, 5] . Thus, a novel HER electrocatalyst with rich abundance and similar reactivity to Pt has captured wide attention.

Read more like this



 


 


Conclusion
We comprehensively summarised the modification strategies and the state-of-the-art advances of HER electrocatalysts based on 2D TMDs. Following the composition-characterisation-construction guideline, we offered three methodologies for HER enhancement: 1) to increase the active sites; 2) to improve the intrinsic conductivity and activity; 3) to optimise the electronic structure. These strategies can boost HER performance individually or in a synergistic way to highlight their roles in structural design and electronic modulation. Both theoretical and experimental findings play vital roles in more insight into TMDs-related HER system, as comprehensively summarised in Fig. 8.

No posts published in this language yet
Once posts are published, you’ll see them here.
References
[1] Turner, J. A. Sustainable Hydrogen Production. Science 2004, 305, 972-974.
[2] Tabassum, H.; Mahmood, A.; Zhu, B.; Liang, Z.; Zhong, R.; Guo, S.; Zou, R. Recent Advances in Confining Metal-Based Nanoparticles into Carbon Nanotubes for Electrochemical Energy Conversion and Storage Devices. Energy Environ. Sci. 2019, 12, 2924-2956.
[3] Liu, Y.; Wu, J.; Hackenberg, K. P.; Zhang, J.; Wang, Y. M.; Yang, Y.; Keyshar, K.; Gu, J.; Ogitsu, T.; Vajtai, R. Self-Optimizing, Highly Surface-Active Layered Metal Dichalcogenide Catalysts for Hydrogen Evolution. Nat. Energy 2017, 2, 17127.CC. 4 INTERNATIONAL DISTRIBUTION Page 271Underlying Structure-Activity Correlations of 2D Layered Transition Metal Dichalcogenides-Based Electrocatalysts for Boosted Hydrogen Generation- Zhexu Xi
[4] Zhang, J.; Wang, T.; Liu, P.; Liu, S.; Dong, R.; Zhuang, X.; Chen, M.; Feng X. Engineering Water Dissociation Sites in MoS2 Nanosheets for Accelerated Electrocatalytic Hydrogen Production. Energy Environ. Sci. 2016, 9, 2789-2793.
[5] Zou, X.; Zhang, Y. Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.
[6] Li, T.; Li, S.; Liu, Q.; Yin, J.; Sun, D.; Zhang, M.; Xu, L.; Tang, Y.; Zhang, Y. Immobilization of Ni3Co Nanoparticles into N‐Doped Carbon Nanotube/Nanofiber Integrated Hierarchically Branched Architectures toward Efficient Overall Water Splitting. Adv. Sci. 2020, 7, 1902371.
[7] Thanh, T. D.; Chuong, N. D.; Hien, H. V.; Kshetri, T.; Tuan, L. H.; Kim, N. H.; Lee, J. H. Recent Advances in Two-Dimensional Transition Metal Dichalcogenides-Graphene Heterostructured Materials for Electrochemical Applications. Prog. Mater. Sci. 2018, 96, 51-85.
[8] Cheng, C. -C.; Lu, A. -Y.; Tseng, C. -C.; Yang, X.; Hedhili, M. N.; Chen, M.-C.; Wei, K. -H.; Li, L. -J. Activating Basal-Plane Catalytic Activity of TwoDimensional MoS2 Monolayer with Remote Hydrogen Plasma. Nano Energy 2016, 30, 846-852.
[9] Meng, C.; Chen, X.; Gao, Y.; Zhao, Q.; Kong, D.; Lin, M.; Chen, X.; Li, Y.; Zhou, Y. Recent Modification Strategies of MoS2 for Enhanced Electrocatalytic Hydrogen Evolution. Molecules 2020, 25, 1136.
[10] Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K. -Y. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020, 120, 851-918.
[11] Morales-Guio, C. G.; Stern, L. -A.; Hu, X. L. Nanostructured Hydrotreating Catalysts for Electrochemical Hydrogen Evolution. Chem. Soc. Rev. 2014, 43, 6555-6569.
[12] Garlyyev, B.; Fichtner, J.; Piqué, O.; Schineider, O.; Bandarenka, A. S.; Calle-Vallejo, F. Revealing the Nature of Active Sites in Electrocatalysis. Chem. Sci. 2019, 10, 8060-8075.
[13] Tributsch, H.; Bennett, J. C. Electrochemistry and Photochemistry of MoS2 Layer Crystals. 1. J. Electroanal. Chem. 1977, 81, 97-111.
[14] Hinnemann, B.; Moses, P. G.; Bonde, J.; Jorgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Norskov, J. K. Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.
[15] Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 2007, 317, 100-102.
[16] Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-Layer MoS2 Transistors. ACS Nano 2012, 6, 74-80.
[17] Nguyen, T. P.; Choi, S.; Jeon, J. -M.; Kwon, K. C.; Jang, H. W.; Kim, S. Y. Transition Metal Disulfide Nanosheets Synthesized by Facile Sonication Method for the Hydrogen Evolution Reaction. J. Phys. Chem. C 2016, 120, 3929-3935.
[18] Zhang, N.; Ma, W.; Wu, T.; Wang, H.; Han, D.; Niu, L. Edge-Rich MoS2 Naonosheets Rooting into Polyaniline Nanofibers as Effective Catalyst for Electrochemical Hydrogen Evolution. Electrochim Acta 2015, 180, 155-163.
[19] Li, H.; Yu, K.; Tang, Z.; Zhu, Z. Experimental and First-Principles Investigation of MoWS2 with High Hydrogen Evolution Performance. ACS Appl. Mater. Interfaces 2016, 8, 29442-29451.
[20] Zhou, S.; Han, J.; Sun, J.; Srolovitz, D. J. MoS2 Edges and Heterophase Interfaces: Energy, Structure and Phase Engineering. 2D Mater. 2017, 4, 025080.
[21] Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets. J. Am. Chem. Soc. 2013, 135, 10274-10277.
[22] Attanayake, N. H.; Thenuwara, A. C.; Patra, A.; Aulin, Y. V.; Tran, T. M.; Chakraborty, H.; Borguet, E.; Klein, M. L.; Perdew, J. P.; Strongin, D. R. Effect of Intercalated Metals on the Electrocatalytic Activity of 1T-MoS2 for the Hydrogen Evolution Reaction. ACS Energy Lett. 2017, 3, 7-13.
[23] Chen, Y. C.; Lu, A.; Lu, P.; Yang, X.; Jiang, C.; Mariano, M.; Kaehr, B.; Lin, O.; Taylor, A.; Sharp, I. D.; Li, L.; Chou, S. S.; Tung, V. Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly EfficientHydrogen Evolution Reaction. Adv. Mater. 2017, 29, 1703863.
[24] Tan, Y.; Liu, P.; Chen, L.; Cong, W.; Ito, Y.; Han, J.; Guo, X.; Tang, Z.; Fujita, T.; Hirata, A.; Chen M. W. Monolayer MoS2 Films Supported by 3D Nanoporous Metals for High-Efficiency Electrocatalytic Hydrogen Production. Adv. Mater. 2014, 26, 8023-8028.
[25] Kim, Y.; Jackson, D. H. K.; Lee, D.; Choi, M.; Kim, T. -W.; Jeong, S. -Y.; Chae, H. -J.; Kim, H. W.; Park, N.; Chang, H.; Kuech, T. F.; Kim, H. J. In Situ Electrochemical Activation of Atomic Layer Deposition Coated MoS2 Basal Planes for Efficient Hydrogen Evolution Reaction. Adv. Funct. Mater. 2017, 27, 1701825.
[26] Cheng, C. -C.; Lu, A. -Y.; Tseng, C. -C.; Yang, X.; Hedhili, M. N.; Chen, M. -C.; Wei, K. -H.; Li, L. -J. Activating Basal-Plane Catalytic Activity of TwoDimensional MoS2 Monolayer with Remote Hydrogen Plasma. Nano Energy 2016, 30, 846–852.
[27] Lin, S. -H.;Kuo, J. -L. Activating and Tuning Basal Planes of MoO2, MoS2, and MoSe2 for Hydrogen Evolution Reaction Phys. Chem. Chem. Phys. 2015, 17, 29305-29310.
[28] Gao, D.; Xia, B.; Zhu, C.; Du, Y.; Xi, P.; Xue, D.; Ding, J.; Wang, J. Activation of the MoSe2 Basal Plane and Se-Edge by B Doping for Enhanced Hydrogen Evolution. J. Mater. Chem. A 2018, 6, 510-515.
[29] Son, D. -Y.; Lee, J. -W.; Choi, Y. J.; Jang, I. -H.; Lee, S.; Yoo, P. J.; Shin, H.; Ahn, N.; Choi, M.; Kim, D.; Park, N. -G. Self-Formed Grain Boundary Healing Layer for Highly Efficient CH3-NH3-PbI3 Perovskite Solar Cells. Nat. Energy 2016, 1, 16081.
[30] He, Y.; Tang, P.; Hu, Z.; He, Q.; Zhu, C.; Wang, L.; Zeng, Q.; Golani, P.; Gao, G.; Fu, W.; et al. Engineering Grain Boundaries at the 2D Limit for the Hydrogen Evolution Reaction. Nat. Commun. 2020, 11, 1-12.
[31] Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Nørskov, J. K.; Chorkendorff, I. Hydrogen Evolution on Nano-Particulate Transition Metal Sulfides. Faraday Discuss. 2009, 140, 219-231.
[32] Zhang, J.; Xu, X.; Yang, L.; Cheng, D.; Cao, D. Single-Atom Ru Doping Induced Phase Transition of MoS2 and S Vacancy for Hydrogen Evolution Reaction. Small Methods 2019, 3, 1900653.
[33] Zhang, H.; Yu, L.; Chen, T.; Zhou, W.; Lou, X. W. D. Surface Modulation of Hierarchical MoS2 Nanosheets by Ni Single Atoms for Enhanced Electrocatalytic Hydrogen Evolution. Adv. Funct. Mater. 2018, 28, 1807086.
[34] Tvrdy, K.; Frantsuzov, P. A.; Kamat, P. V. Photoinduced Electron Transfer from Semiconductor Quantum Dots to Metal Oxide Nanoparticles. PNAS 2011, 108, 29-34.
[35] Presolski, S.; Wang, L.; Loo, A. H.; Ambrosi, A.; Lazar, P.; Ranc, V.; Otyepka, M.; Zboril, R.; Tomanec, O.; Ugolotti, J.; et al. Functional Nanosheet Synthons by Covalent Modification of Transition-Metal Dichalcogenides. Chem. Mater. 2017, 29, 2066-2073.

Abstract
Introduction
Conclusion
References

All Products

bottom of page