Reference
[1] T. Devaux, A. Cebrecos, O. Richoux, V. Pagneux, and V. Tournat, Acoustic radiation pressure for nonreciprocal transmission and switch effects, Nature Communications 10, 3292 (2019).
[2] Q. Wang, Z. Zhou, D. Liu, H. Ding, M. Gu, and Y. Li, Acoustic topological beam nonreciprocity via the rotational Doppler effect, Science Advances 8, eabq4451 (2022).
[3] L. Hackett, M. Miller, S. Weatherred, S. Arterburn, M. J. Storey, G. Peake, D. Dominguez, P. S. Finnegan, T. A. Friedmann, and M. Eichenfield, Non-reciprocal acoustoelectric microwave amplifiers with net gain and low noise in continuous operation, Nature Electronics 6, 76 (2023).
[4] A. Nagulu, N. Reiskarimian, and H. Krishnaswamy, Nonreciprocal electronics based on temporal modulation, Nature Electronics 3, 241 (2020).
[5] L. Shao, D. Zhu, M. Colangelo, D. Lee, N. Sinclair, Y. Hu, P. T. Rakich, K. Lai, K. K. Berggren, and M. Lonˇcar, Electrical control of surface acoustic waves, Nature Electronics 5, 348 (2022).
[6] P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, Chiral quantum optics, Nature 541, 473 (2017).
[7] G. Viola and D. P. DiVincenzo, Hall effect gyrators and 6 circulators, Physical Review X 4, 021019 (2014).
[8] D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovi´c, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, What is and what is not an optical isolator, Nature Photonics 7, 579 (2013).
[9] M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, Quantum optical circulator controlled by a single chirally coupled atom, Science 354, 1577 (2016).
[10] C. C. Wanjura, M. Brunelli, and A. Nunnenkamp, Topological framework for directional amplification in drivendissipative cavity arrays, Nature Communications 11, 3149 (2020).
[11] Z. Shen, Y.-L. Zhang, Y. Chen, F.-W. Sun, X.-B. Zou, G.-C. Guo, C.-L. Zou, and C.-H. Dong, Reconfigurable optomechanical circulator and directional amplifier, Nature Communications 9, 1797 (2018).
[12] L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, An all-silicon passive optical diode, Science 335, 447 (2012).
[13] Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, Experimental demonstration of spontaneous chirality in a nonlinear microresonator, Physical Review Letters 118, 033901 (2017).
[14] K. Xia, F. Nori, and M. Xiao, Cavity-Free Optical Isolators and Circulators Using a Chiral Cross-Kerr Nonlinearity, Physical Review Letters 121, 203602 (2018).
[15] S. Manipatruni, J. T. Robinson, and M. Lipson, Optical nonreciprocity in optomechanical structures, Physical Review Letters 102, 213903 (2009).
[16] Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, Experimental realization of optomechanically induced nonreciprocity, Nature Photonics 10, 657 (2016). [17] E.-Z. Li, D.-S. Ding, Y.-C. Yu, M.-X. Dong, L. Zeng, W.-H. Zhang, Y.-H. Ye, H.-Z. Wu, Z.-H. Zhu, W. Gao, G.-C. Guo, and B.-S. Shi, Experimental demonstration of cavity-free optical isolators and optical circulators, Physical Review Research 2, 033517 (2020).
[18] M.-X. Dong, K.-Y. Xia, W.-H. Zhang, Y.-C. Yu, Y.-H. Ye, E.-Z. Li, L. Zeng, D.-S. Ding, B.-S. Shi, G.-C. Guo, and F. Nori, All-optical reversible single-photon isolation at room temperature, Science Advances 7, eabe8924 (2021).
[19] S. Zhang, Y. Hu, G. Lin, Y. Niu, K. Xia, J. Gong, and S. Gong, Thermal-motion-induced non-reciprocal quantum optical system, Nature Photonics 12, 744 (2018).
[20] X.-X. Hu, Z.-B. Wang, P. Zhang, G.-J. Chen, Y.-L. Zhang, G. Li, X.-B. Zou, T. Zhang, H. X. Tang, C.-H. Dong, G.-C. Guo, and C.-L. Zou, Noiseless photonic nonreciprocity via optically-induced magnetization, Nature Communications 12, 2389 (2021).
[21] S. Pucher, C. Liedl, S. Jin, A. Rauschenbeutel, and P. Schneeweiss, Atomic spin-controlled non-reciprocal Raman amplification of fibre-guided light, Nature Photonics 16, 380 (2022).
[22] N. O. Antoniadis, N. Tomm, T. Jakubczyk, R. Schott, S. R. Valentin, A. D. Wieck, A. Ludwig, R. J. Warburton, and A. Javadi, A chiral one-dimensional atom using a quantum dot in an open microcavity, npj Quantum Information 8, 27 (2022).
[23] P. P. Iyer, R. A. DeCrescent, Y. Mohtashami, G. Lheureux, N. A. Butakov, A. Alhassan, C. Weisbuch, S. Nakamura, S. P. DenBaars, and J. A. Schuller, Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces, Nature Photonics 14, 543 (2020).
24] A. Metelmann and H. E. T¨ureci, Nonreciprocal signal routing in an active quantum network, Physical Review A 97, 043833 (2018).
[25] D. A. Miller, Are optical transistors the logical next step?, Nature Photonics 4, 3 (2010).
[26] E. Verhagen and A. Al`u, Optomechanical nonreciprocity, Nature Physics 13, 922 (2017).
[27] H.-K. Lau and A. A. Clerk, Fundamental limits and nonreciprocal approaches in non-Hermitian quantum sensing, Nature Communications 9, 4320 (2018).
[28] H. J. Kimble, The quantum internet, Nature 453, 1023 (2008).
[29] H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, and S. Hofferberth, Single-photon transistor mediated by interstate Rydberg interactions, Physical Review Letters 113, 053601 (2014).
[30] Z. Wang, Z. Bao, Y. Li, Y. Wu, W. Cai, W. Wang, X. Han, J. Wang, Y. Song, L. Sun, H. Zhang, and L.- M. Duan, An ultra-high gain single-photon transistor in the microwave regime, Nature Communications 13, 6104 (2022).
[31] K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, Optomechanical transducers for longdistance quantum communication, Physical Review Letters 105, 220501 (2010)
[32] A. RosarioHamann, C. M¨uller, M. Jerger, M. Zanner, J. Combes, M. Pletyukhov, M. Weides, T. M. Stace, and A. Fedorov, Nonreciprocity realized with quantum nonlinearity, Physical Review Letters 121, 123601 (2018).
[33] C. M¨uller, J. Combes, A. R. Hamann, A. Fedorov, and T. M. Stace, Nonreciprocal atomic scattering: A saturable, quantum Yagi-Uda antenna, Physical Review A 96, 053817 (2017).
[34] S. Barzanjeh, M. Aquilina, and A. Xuereb, Manipulating the flow of thermal noise in quantum devices, Physical Review Letters 120, 060601 (2018).
[35] A. Metelmann and A. A. Clerk, Nonreciprocal photon transmission and amplification via reservoir engineering, Physical Review X 5, 021025 (2015).
[36] F. Lecocq, L. Ranzani, G. A. Peterson, K. Cicak, R. W. Simmonds, J. D. Teufel, and J. Aumentado, Nonreciprocal microwave signal processing with a fieldprogrammable Josephson amplifier, Physical Review Applied 7, 024028 (2017).
[37] G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Demonstration of efficient nonreciprocity in a microwave optomechanical circuit, Physical Review X 7, 031001 (2017). [38] D. Malz, L. D. T´oth, N. R. Bernier, A. K. Feofanov, T. J. Kippenberg, and A. Nunnenkamp, Quantum-limited directional amplifiers with optomechanics, Physical Review Letters 120, 023601 (2018).
[39] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Physical Review Letters 78, 3221 (1997).
[40] J. Lan, W. Yu, R. Wu, J. Xiao, et al., Spin-wave diode, Physical Review X 5, 041049 (2015). [41] See Supplemental Material for more details, [42] R. Wen, C.-L. Zou, X. Zhu, P. Chen, Z. Y. Ou, 7 J. F. Chen, and W. Zhang, Non-Hermitian magnonphoton interference in an atomic ensemble, Physical Review Letters 122, 253602 (2019). [43] J. Simon, H. Tanji, S. Ghosh, and V. Vuleti´c, Singlephoton bus connecting spin-wave quantum memories, Nature Physics 3, 765 (2007). [44] G.-S. Ye, B. Xu, Y. Chang, S. Shi, T. Shi, and L. Li, A photonic entanglement filter with Rydberg atoms, Nature Photonics 17, 538 (2023). [45] D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, B.-S. Shi, and G.-C. Guo, Raman quantum memory of photonic polarized entanglement, Nature Photonics 9, 332–338 (2015). [46] Y.-W. Cho and Y.-H. Kim, Atomic vapor quantum memory for a photonic polarization qubit, Optics Express 18, 25786 (2010). [47] C. Gonzalez-Ballestero, A. Gonzalez-Tudela, F. J. Garcia-Vidal, and E. Moreno, Chiral route to spontaneous entanglement generation, Physical Review B 92, 155304 (2015). [48] A. V. Gorshkov, A. Andr´e, M. Fleischhauer, A. S. Sørensen, and M. D. Lukin, Universal approach to optimal photon storage in atomic media, Physical Review Letters 98, 123601 (2007). [49] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Longdistance quantum communication with atomic ensembles and linear optics, Nature 414, 413 (2001). [50] Y.-C. Chen, C.-W. Lin, and I. A. Yu, Roles of degenerate Zeeman levels in electromagnetically induced transparency, Physical Review A 61, 053805 (2000). [51] B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency, Physical Review A 73, 051801 (2006). [52] F. Alpeggiani, K. Y. Bliokh, F. Nori, and L. Kuipers, Electromagnetic helicity in complex media, Physical Review Letters 120, 243605 (2018). [53] K. Y. Bliokh, Y. S. Kivshar, and F. Nori, Magnetoelectric effects in local light-matter interactions, Physical Review Letters 113, 033601 (2014). [54] T. Van Mechelen and Z. Jacob, Universal spinmomentum locking of evanescent waves, Optica 3, 118 (2016). [55] Z.-Q. Yang, Z.-K. Shao, H.-Z. Chen, X.-R. Mao, and R.- M. Ma, Spin-momentum-locked edge mode for topological vortex lasing, Physical Review Letters 125, 013903 (2020). [56] V. Bali´c, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, Generation of paired photons with controllable waveforms, Physical Review Letters 94, 183601 (2005). [57] S. Du, J. Wen, and M. H. Rubin, Narrowband biphoton generation near atomic resonance, JOSA B 25, C98 (2008). [58] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Reviews of Modern Physics 77, 633 (2005). [59] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Measurement of qubits, Physical Review A 64, 052312 (2001). [60] K. Koshino, S. Ishizaka, and Y. Nakamura, Deterministic photon-photon SWAP gate using a Λ system, Physical Review A 82, 010301 (2010). [61] L.-M. Duan and H. J. Kimble, Scalable photonic quantum computation through cavity-assisted interactions, Physical Review Letters 92, 127902 (2004). [62] B. Pingault, J. N. Becker, C. H. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C. Becher, and M. Atat¨ure, All-Optical Formation of Coherent Dark States of Silicon-Vacancy Spins in Diamond, Physical Review Letters 113, 263601 (2014). [63] L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, All-Optical Initialization, Readout, and Coherent Preparation of Single Silicon-Vacancy Spins in Diamond, Physical Review Letters 113, 263602 (2014). [64] K. Xia, F. Jelezko, and J. Twamley, Quantum routing of single optical photons with a superconducting flux qubit, Physical Review A 97, 052315 (2018). [65] M.-M. Cao, K. Li, W.-D. Zhao, W.-X. Guo, B.-X. Qi, X.- Y. Chang, Z.-C. Zhou, Y. Xu, and L.-M. Duan, Probing Complex-Energy Topology via Non-Hermitian Absorption Spectroscopy in a Trapped Ion Simulator, Physical Review Letters 130, 163001 (2023). [66] H. Cao and J. Wiersig, Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics, Reviews of Modern Physics 87, 61 (2015). [67] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, NonHermitian physics and PT symmetry, Nature Physics 14, 11 (2018). [68] S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle, et al., Manipulation and coherence of ultracold atoms on a superconducting atom chip, Nature Communications 4, 2380 (2013). [69] L. Zhu, X. Liu, B. Sain, M. Wang, C. Schlickriede, Y. Tang, J. Deng, K. Li, J. Yang, M. Holynski, et al., A dielectric metasurface optical chip for the generation of cold atoms, Science Advances 6, eabb6667 (2020).