[2] Serguei Chatrchyan et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B, 716:30–61, 2012. [3] F. Englert and R. Brout. Broken Symmetry and the Mass of Gauge Vector Mesons. Phys. Rev. Lett., 13:321–323, 1964. [4] Peter W. Higgs. Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett., 13:508–509, 1964. [5] A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery. Nature, 607(7917):52–59, 2022. [Erratum: Nature 612, E24 (2022)]. [6] Armen Tumasyan et al. A portrait of the Higgs boson by the CMS experiment ten years after the discovery. Nature, 607(7917):60–68, 2022. [7] A. Liss and J. Nielsen. Physics at a High-Luminosity LHC with ATLAS. 7 2013. [8] Projected Performance of an Upgraded CMS Detector at the LHC and HL-LHC: Contribution to the Snowmass Process. In Snowmass 2013: Snowmass on the Mississippi, 7 2013. [9] Stefano Moretti and Shaaban Khalil. Supersymmetry Beyond Minimality: From Theory to Experiment. CRC Press, 2019. [10] A. Dedes, C. Hugonie, S. Moretti, and K. Tamvakis. Phenomenology of a new minimal supersymmetric extension of the standard model. Phys. Rev. D, 63:055009, 2001. [11] Bogdan A. Dobrescu and Konstantin T. Matchev. Light axion within the next-to-minimal supersymmetric standard model. JHEP, 09:031, 2000. [12] Ulrich Ellwanger, John F. Gunion, Cyril Hugonie, and Stefano Moretti. Towards a no lose theorem for NMSSM Higgs discovery at the LHC. 5 2003. [13] Radovan Dermisek and John F. Gunion. Escaping the large fine tuning and little hierarchy problems in the next to minimal supersymmetric model and h → aa decays. Phys. Rev. Lett., 95:041801, 2005. [14] Maxim Pospelov, Adam Ritz, and Mikhail B. Voloshin. Secluded WIMP Dark Matter. Phys. Lett. B, 662:53–61, 2008. [15] Patrick Draper, Tao Liu, Carlos E. M. Wagner, Lian-Tao Wang, and Hao Zhang. Dark Light Higgs. Phys. Rev. Lett., 106:121805, 2011. [16] Seyda Ipek, David McKeen, and Ann E. Nelson. A Renormalizable Model for the Galactic Center Gamma Ray Excess from Dark Matter Annihilation. Phys. Rev. D, 90(5):055021, 2014. [17] Abdesslam Arhrib, Yue-Lin Sming Tsai, Qiang Yuan, and Tzu-Chiang Yuan. An Updated Analysis of Inert Higgs Doublet Model in light of the Recent Results from LUX, PLANCK, AMS-02 and LHC. JCAP, 06:030, 2014. [18] Stefano Profumo, Michael J. Ramsey-Musolf, and Gabe Shaughnessy. Singlet Higgs phenomenology and the electroweak phase transition. JHEP, 08:010, 2007. 18 [19] Nikita Blinov, Jonathan Kozaczuk, David E. Morrissey, and Carlos Tamarit. Electroweak Baryogenesis from Exotic Electroweak Symmetry Breaking. Phys. Rev. D, 92(3):035012, 2015. [20] T. D. Lee. A Theory of Spontaneous T Violation. Phys. Rev. D, 8:1226–1239, 1973. [21] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, Marc Sher, and Joao P. Silva. Theory and phenomenology of two-Higgs-doublet models. Phys. Rept., 516:1–102, 2012. [22] Abdesslam Arhrib, Rachid Benbrik, Stefano Moretti, Abdessamad Rouchad, Qi-Shu Yan, and Xianhui Zhang. Multi-photon production in the Type-I 2HDM. JHEP, 07:007, 2018. [23] Alejandro Celis, Victor Ilisie, and Antonio Pich. LHC constraints on two-Higgs doublet models. JHEP, 07:053, 2013. [24] Benjamin Grinstein and Patipan Uttayarat. Carving Out Parameter Space in Type-II Two Higgs Doublets Model. JHEP, 06:094, 2013. [Erratum: JHEP 09, 110 (2013)]. [25] Chien-Yi Chen, S. Dawson, and Marc Sher. Heavy Higgs Searches and Constraints on Two Higgs Doublet Models. Phys. Rev. D, 88:015018, 2013. [Erratum: Phys.Rev.D 88, 039901 (2013)]. [26] V. Khachatryan et al. Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at √ s = 8 TeV. JHEP, 10:076, 2017. [27] Albert M Sirunyan et al. Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at √ s = 13 TeV. Phys. Lett. B, 800:135087, 2020. [28] Georges Aad et al. Search for Higgs bosons decaying to aa in the µµτ τ final state in pp collisions at √ s = 8 TeV with the ATLAS experiment. Phys. Rev. D, 92(5):052002, 2015. [29] Albert M Sirunyan et al. Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state of two muons and two τ leptons in proton-proton collisions at √ s = 13 TeV. JHEP, 11:018, 2018. [30] Albert M Sirunyan et al. Search for a light pseudoscalar Higgs boson in the boosted µµτ τ final state in proton-proton collisions at √ s = 13 TeV. JHEP, 08:139, 2020. [31] Search for exotic decays of the Higgs boson to a pair of new light bosons in the µµbb final state at √ s = 13 TeV with the full Run 2 dataset. 2022. [32] Search for exotic Higgs boson decays to a pair of pseudoscalars in the µµbb and τ τbb final states in proton-proton collisions with the CMS experiment. 2023. [33] Albert M Sirunyan et al. Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton–proton collisions at √ s =13TeV. Phys. Lett. B, 778:101–127, 2018. [34] Albert M Sirunyan et al. Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two τ leptons in proton-proton collisions at √ s = 13 TeV. Phys. Lett. B, 785:462, 2018. [35] Morad Aaboud et al. Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at √ s = 13 TeV. JHEP, 06:166, 2018. 19 [36] Serguei Chatrchyan et al. Search for a Non-Standard-Model Higgs Boson Decaying to a Pair of New Light Bosons in Four-Muon Final States. Phys. Lett. B, 726:564–586, 2013. [37] V. Khachatryan et al. A search for pair production of new light bosons decaying into muons. Phys. Lett. B, 752:146–168, 2016. [38] Albert M Sirunyan et al. A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13 TeV. Phys. Lett. B, 796:131–154, 2019. [39] Georges Aad et al. Search for Higgs bosons decaying into new spin-0 or spin-1 particles in four-lepton final states with the ATLAS detector with 139 fb−1 of pp collision data at √ s = 13 TeV. JHEP, 03:041, 2022. [40] F. Gianotti et al. Physics potential and experimental challenges of the LHC luminosity upgrade. Eur. Phys. J. C, 39:293–333, 2005. [41] Abdesslam Arhrib, Rachid Benbrik, and Cheng-Wei Chiang. Probing triple Higgs couplings of the Two Higgs Doublet Model at Linear Collider. Phys. Rev. D, 77:115013, 2008. [42] Shinya Kanemura, Mariko Kikuchi, and Kei Yagyu. Fingerprinting the extended Higgs sector using one-loop corrected Higgs boson couplings and future precision measurements. Nucl. Phys. B, 896:80–137, 2015. [43] Sheldon L. Glashow and Steven Weinberg. Natural Conservation Laws for Neutral Currents. Phys. Rev. D, 15:1958, 1977. [44] Shinya Kanemura, Takahiro Kubota, and Eiichi Takasugi. Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model. Phys. Lett. B, 313:155–160, 1993. [45] Andrew G. Akeroyd, Abdesslam Arhrib, and El-Mokhtar Naimi. Note on tree level unitarity in the general two Higgs doublet model. Phys. Lett. B, 490:119–124, 2000. [46] Abdesslam Arhrib. Unitarity constraints on scalar parameters of the standard and two Higgs doublets model. In Workshop on Noncommutative Geometry, Superstrings and Particle Physics, 12 2000. [47] Nilendra G. Deshpande and Ernest Ma. Pattern of Symmetry Breaking with Two Higgs Doublets. Phys. Rev. D, 18:2574, 1978. [48] David Eriksson, Johan Rathsman, and Oscar Stal. 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual. Comput. Phys. Commun., 181:189–205, 2010. [49] Philip Bechtle, Daniel Dercks, Sven Heinemeyer, Tobias Klingl, Tim Stefaniak, Georg Weiglein, and Jonas Wittbrodt. HiggsBounds-5: Testing Higgs Sectors in the LHC 13 TeV Era. Eur. Phys. J. C, 80(12):1211, 2020. [50] Philip Bechtle, Sven Heinemeyer, Tobias Klingl, Tim Stefaniak, Georg Weiglein, and Jonas Wittbrodt. HiggsSignals-2: Probing new physics with precision Higgs measurements in the LHC 13 TeV era. Eur. Phys. J. C, 81(2):145, 2021. [51] Hong-Jian He, Nir Polonsky, and Shu-fang Su. Extra families, Higgs spectrum and oblique corrections. Phys. Rev. D, 64:053004, 2001. [52] W. Grimus, L. Lavoura, O. M. Ogreid, and P. Osland. The Oblique parameters in multiHiggs-doublet models. Nucl. Phys. B, 801:81–96, 2008. 20 [53] Howard E. Haber and Deva O’Neil. Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U. Phys. Rev. D, 83:055017, 2011. [54] P. A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020. [55] F. Mahmoudi. SuperIso v2.3: A Program for calculating flavor physics observables in Supersymmetry. Comput. Phys. Commun., 180:1579–1613, 2009. [56] Y. Amhis et al. Averages of b-hadron, c-hadron, and τ -lepton properties as of summer 2016. Eur. Phys. J. C, 77(12):895, 2017. [57] Roel Aaij et al. Measurement of the B0 s → µ +µ − decay properties and search for the B0 → µ +µ − and B0 s → µ +µ −γ decays. Phys. Rev. D, 105(1):012010, 2022. [58] R. Aaij et al. Analysis of Neutral B-Meson Decays into Two Muons. Phys. Rev. Lett., 128(4):041801, 2022. [59] Armen Tumasyan et al. Measurement of the B0 S→µ +µ − decay properties and search for the B0→µ +µ − decay in proton-proton collisions at √ s = 13 TeV. Phys. Lett. B, 842:137955, 2023. [60] Georges Aad et al. Evidence of off-shell Higgs boson production from ZZ leptonic decay channels and constraints on its total width with the ATLAS detector. 4 2023. [61] Armen Tumasyan et al. Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production. Nature Phys., 18(11):1329–1334, 2022. [62] Robert V. Harlander, Stefan Liebler, and Hendrik Mantler. SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM. Comput. Phys. Commun., 184:1605–1617, 2013. [63] Robert V. Harlander, Stefan Liebler, and Hendrik Mantler. SusHi Bento: Beyond NNLO and the heavy-top limit. Comput. Phys. Commun., 212:239–257, 2017. [64] Robert V. Harlander and William B. Kilgore. Next-to-next-to-leading order Higgs production at hadron colliders. Phys. Rev. Lett., 88:201801, 2002. [65] Charalampos Anastasiou, Claude Duhr, Falko Dulat, Franz Herzog, and Bernhard Mistlberger. Higgs Boson Gluon-Fusion Production in QCD at Three Loops. Phys. Rev. Lett., 114:212001, 2015. [66] M. Cepeda et al. Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC. CERN Yellow Rep. Monogr., 7:221–584, 2019. [67] Combination of searches for invisible decays of the Higgs boson using 139 fb−1 of protonproton collision data at s=13 TeV collected with the ATLAS experiment. Phys. Lett. B, 842:137963, 2023. [68] A search for decays of the Higgs boson to invisible particles in events with a top-antitop quark pair or a vector boson in proton-proton collisions at √ s = 13 TeV. 3 2023. [69] S. Schael et al. Search for neutral MSSM Higgs bosons at LEP. Eur. Phys. J. C, 47:547– 587, 2006. 21 [70] Georges Aad et al. Search for new phenomena in events with at least three photons collected in pp collisions at √ s = 8 TeV with the ATLAS detector. Eur. Phys. J. C, 76(4):210, 2016. [71] Kaoru Hagiwara, Tong Li, Kentarou Mawatari, and Junya Nakamura. TauDecay: a library to simulate polarized tau decays via FeynRules and MadGraph5. Eur. Phys. J. C, 73:2489, 2013. [72] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro. The automated computation of tree-level and next-toleading order differential cross sections, and their matching to parton shower simulations. JHEP, 07:079, 2014. [73] Fernando Febres Cordero, L. Reina, and D. Wackeroth. W- and Z-boson production with a massive bottom-quark pair at the Large Hadron Collider. Phys. Rev. D, 80:034015, 2009. [74] T. Binoth et al. The SM and NLO Multileg Working Group: Summary report. In 6th Les Houches Workshop on Physics at TeV Colliders, pages 21–189, 3 2010. [75] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. PYTHIA 6.4 Physics and Manual. JHEP, 05:026, 2006. [76] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaˆıtre, A. Mertens, and M. Selvaggi. DELPHES 3, A modular framework for fast simulation of a generic collider experiment. JHEP, 02:057, 2014. [77] Eric Conte, Benjamin Fuks, and Guillaume Serret. MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology. Comput. Phys. Commun., 184:222–256, 2013. [78] Vardan Khachatryan et al. The CMS trigger system. JINST, 12(01):P01020, 2017. [79] A. M. Sirunyan et al. Performance of reconstruction and identification of τ leptons decaying to hadrons and ντ in pp collisions at √ s = 13 TeV. JINST, 13(10):P10005, 2018. [80] Swagata Mukherjee. Data Scouting and Data Parking with the CMS High level Trigger. PoS, EPS-HEP2019:139, 2020. [81] Robert Bainbridge. Recording and reconstructing 10 billion unbiased b hadron decays in CMS. EPJ Web Conf., 245:01025, 2020. [82] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The anti-kt jet clustering algorithm. JHEP, 04:063, 2008. [83] Yuri L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber. Better jet clustering algorithms. JHEP, 08:001, 1997. [84] M. Wobisch and T. Wengler. Hadronization corrections to jet cross-sections in deep inelastic scattering. In Workshop on Monte Carlo Generators for HERA Physics (Plenary Starting Meeting), pages 270–279, 4 1998. [85] Serguei Chatrchyan et al. Identification of b-Quark Jets with the CMS Experiment. JINST, 8:P04013, 2013. [86] A. M. Sirunyan et al. Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV. JINST, 13(05):P05011, 2018. 22 [87] Antimo Cagnotta, Francesco Carnevali, and Agostino De Iorio. Machine Learning Applications for Jet Tagging in the CMS Experiment. Appl. Sciences, 12(20):10574, 2022.