top of page
ORCID_iD.svg.png

PTL PREMIUM

Tphysicsletters/6980/1296/Dirac-Majorana neutrino type conversion induced by an oscillating scalar dark matter

Theoretical Physics Letters.png

Monday, May 29, 2023 at 6:30:00 AM UTC

Request Open

Dirac-Majorana neutrino type conversion induced by an oscillating scalar dark matter

YeolLin ChoeJo,1

Theoretical Physics Letters

2023 ° 13(05) ° 0697-1296

https://www.wikipt.org/tphysicsletters

DOI: 10.1490/369960.783tpl

Unlock Only

Changeover the Schrödinger Equation

This option will drive you towards only the selected publication. If you want to save money then choose the full access plan from the right side.

Unlock all

Get access to entire database

This option will unlock the entire database of us to you without any limitations for a specific time period.
This offer is limited to 100000 clients if you make delay further, the offer slots will be booked soon. Afterwards, the prices will be 50% hiked.

Newsletters
Some properties of a neutrino may differ significantly depending on whether it is Dirac or Majorana type. The type is determined by the relative size of Dirac and Majorana masses, which may vary if they arise from an oscillating scalar dark matter. We show that the change can be significant enough to convert the neutrino type between Dirac and Majorana while satisfying constraints on the dark matter. It predicts periodic modulations in the event rates in various neutrino phenomena. As the energy density and, thus, the oscillation amplitude of the dark matter evolves in the cosmic time scale, the relative size of Dirac and Majorana masses changes accordingly. It provides an interesting link between the present-time neutrino physics to the early universe cosmology including the leptogenesis.

One of the unrevealed properties of the neutrinos is whether they are Dirac type or Majorana type. Some important physics occur only for the Majorana type; the leptogenesis that can explain the baryon asymmetry of the universe (BAU) and the seesaw mechanism that can explain the smallness of the neutrino masses. Experiments such as neutrinoless double beta decay can expect signals only for the Majorana neutrinos. The true nature of the neutrinos may not be simple enough to identify them as either Dirac or Majorana type, though. It is especially so in view that the properties of dark matter, which is another mystery in particle physics, are also unrevealed. It is quite possible that neutrino and dark matter are tightly linked, affecting each other. Especially, the Majorana neutrino requires a Majorana mass, which might originate from dark matter. In this letter, we propose a new scenario in which the dark matter may convert the type of neutrinos, adopting a slowly oscillating scalar dark matter whose value serves as the Majorana mass. We show the oscillation can be large enough to change it back and forth between the Dirac and Majorana types while satisfying all the constraints for dark matter. Interestingly, the scenario provides distinct phenomenology both in the present-time neutrino phenomenology and early universe physics. Coupling an oscillating scalar field to vary the particle mass is not new, including the neutrino masses [1–7]. Previous works on neutrinos with varying Majorana mass via ultra-light dark matter considered the effects of small modulations only either within the quasi-Dirac type [8] or within the Majorana type [9] on neutrino flavor oscillation experiments or cosmological observables. Our study differs from the existing works in that it is the first proposal of alternating the neutrino type between the Dirac and Majorana.

Our study shows that if the Majorana mass mR is given by the coupling of the right-handed neutrinos with an oscillating scalar dark matter, then mR inherits the oscillatory nature of the dark matter, possibly resulting in periodic Dirac-Majorana neutrino-type conversion. Since the amplitude of the dark matter decreases over time, the Majorana masses in this scenario were significantly larger in the early universe, and they reduced to the current values as the universe expanded. As the energy density or the oscillation amplitude of the oscillating dark matter evolves in the cosmic time scale, the ratio of the Majorana and Dirac masses (mR/mD) changes accordingly, resulting in unique signatures. Rich physics and cosmology are warranted.

No posts published in this language yet
Once posts are published, you’ll see them here.
[1] K. Van Tilburg, N. Leefer, L. Bougas, and D. Budker, Phys. Rev. Lett. 115, 011802 (2015), arXiv:1503.06886 [physics.atom-ph].
[2] A. Berlin, Phys. Rev. Lett. 117, 231801 (2016), arXiv:1608.01307 [hep-ph].
[3] G. Krnjaic, P. A. N. Machado, and L. Necib, Phys. Rev. D 97, 075017 (2018), arXiv:1705.06740 [hep-ph].
[4] A. Arvanitaki, P. W. Graham, J. M. Hogan, S. Rajendran, and K. Van Tilburg, Phys. Rev. D 97, 075020 (2018), arXiv:1606.04541 [hep-ph].
[5] J. Berger and A. Bhoonah, (2022), arXiv:2206.06364 [hep-ph].
[6] J. Guo, Y. He, J. Liu, X.-P. Wang, and K.-P. Xie, (2022), arXiv:2206.14221 [hep-ph].
[7] T. Gherghetta and A. Shkerin, (2023), arXiv:2305.06441 [hep-ph].
[8] A. Dev, G. Krnjaic, P. Machado, and H. Ramani, Phys. Rev. D 107, 035006 (2023), arXiv:2205.06821 [hep-ph].
[9] G.-y. Huang and N. Nath, JCAP 05, 034 (2022), arXiv:2111.08732 [hep-ph].
[10] J. W. F. Valle, Phys. Rev. D 27, 1672 (1983).
[11] E. K. Akhmedov, in ICTP Summer School in Particle Physics (1999) pp. 103–164, arXiv:hep-ph/0001264.
[12] A. de Gouvea, W.-C. Huang, and J. Jenkins, Phys. Rev. D 80, 073007 (2009), arXiv:0906.1611 [hep-ph].
[13] G. Anamiati, V. De Romeri, M. Hirsch, C. A. Ternes, and M. T´ortola, Phys. Rev. D 100, 035032 (2019), arXiv:1907.00980 [hep-ph].
[14] P. Minkowski, Phys. Lett. B 67, 421 (1977).
[15] M. Gell-Mann, P. Ramond, and R. Slansky, Conf. Proc. C 790927, 315 (1979), arXiv:1306.4669 [hep-th].
[16] R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett.44, 912 (1980).
[17] T. Yanagida, Prog. Theor. Phys. 64, 1103 (1980).
[18] L. Hui, Ann. Rev. Astron. Astrophys. 59, 247 (2021), arXiv:2101.11735 [astro-ph.CO].
[19] P. A. Zyla et al. (Particle Data Group), PTEP 2020, 083C01 (2020).
[20] B. Pontecorvo, Zh. Eksp. Teor. Fiz. 34, 247 (1957).
[21] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).
[22] A. Gando et al. (KamLAND-Zen), Phys. Rev. Lett. 117,082503 (2016), [Addendum: Phys.Rev.Lett. 117, 109903 (2016)], arXiv:1605.02889 [hep-ex].
[23] G.-y. Huang, W. Rodejohann, and S. Zhou, Phys. Rev. D 101, 016003 (2020), arXiv:1910.08332 [hep-ph].
[24] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO].
[25] I. J. Arnquist et al. (Majorana), Phys. Rev. Lett. 130, 062501 (2023), arXiv:2207.07638 [nucl-ex].
[26] J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982).
[27] M. Doi, T. Kotani, and E. Takasugi, Prog. Theor. Phys. Suppl. 83, 1 (1985).
[28] W. Rodejohann, Int. J. Mod. Phys. E 20, 1833 (2011), arXiv:1106.1334 [hep-ph].
[29] A. Faessler, M. Gonz´alez, S. Kovalenko, and F. Simkovic, Phys. Rev. D 90, 096010 (2014), arXiv:1408.6077 [hepph].
[30] P. D. Bolton, F. F. Deppisch, and P. S. Bhupal Dev, JHEP 03, 170 (2020), arXiv:1912.03058 [hep-ph].
[31] W. Dekens, J. de Vries, E. Mereghetti, J. Men´endez, P. Soriano, and G. Zhou, (2023), arXiv:2303.04168 [hepph].
[32] S. Davidson, E. Nardi, and Y. Nir, Phys. Rept. 466, 105 (2008), arXiv:0802.2962 [hep-ph].
[33] S. Davidson and A. Ibarra, Phys. Lett. B 535, 25 (2002), arXiv:hep-ph/0202239.
[34] A. Pilaftsis, Phys. Rev. D 56, 5431 (1997), arXiv:hepph/9707235.
[35] A. Pilaftsis and T. E. J. Underwood, Nucl. Phys. B 692, 303 (2004), arXiv:hep-ph/0309342.
[36] P. S. Bhupal Dev, P. Millington, A. Pilaftsis, and D. Teresi, Nucl. Phys. B 886, 569 (2014), arXiv:1404.1003 [hep-ph].

Abstract
Introduction
Conclusion
References

All Products

bottom of page