No posts published in this language yet
Once posts are published, you’ll see them here.
Monday, September 11, 2023 at 3:15:00 PM UTC
Request Open
MM and KB acknowledge support from NSF grant AST-2009441. Research by DC is supported by NSF grant AST-1814208. ABP is supported by NSF grant AST-1813881. JLC acknowledges support from NSF grant AST-1816196. CEMV is supported by the international Gemini Observatory, a program of NSF’s NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation, on behalf of the Gemini partnership of Argentina, Brazil, Canada, Chile, the Republic of Korea, and the United States of America. DJS acknowledges support from NSF grant AST-1821967 and AST-2205863. JACB acknowledges support from FONDECYT Regular N 1220083.
Changeover the Schrödinger Equation
This option will drive you towards only the selected publication. If you want to save money then choose the full access plan from the right side.
Get access to entire database
This option will unlock the entire database of us to you without any limitations for a specific time period.
This offer is limited to 100000 clients if you make delay further, the offer slots will be booked soon. Afterwards, the prices will be 50% hiked.
We report results from a systematic wide-area search for faint dwarf galaxies at heliocentric distances from 0.3 to 2 Mpc using the full six years of data from the Dark Energy Survey (DES). Unlike previous searches over the DES data, this search specifically targeted a field population of faint galaxies located beyond the Milky Way virial radius. We derive our detection efficiency for faint, resolved dwarf galaxies in the Local Volume with a set of synthetic galaxies and expect our search to be complete to MV ∼ (−7, −10) mag for galaxies at D = (0.3, 2.0) Mpc respectively. We find no new field dwarfs in the DES footprint, but we report the discovery of one high-significance candidate dwarf galaxy at a distance of 2.2 +0.05 −0.12 Mpc, a potential satellite of the Local Volume galaxy NGC 55, separated by 47 arcmin (physical separation as small as 30 kpc). We estimate this dwarf galaxy to have an absolute V-band magnitude of −8.0 +0.5 −0.3 mag and an azimuthally averaged physical half-light radius of 2.2 +0.5 −0.4 kpc, making this one of the lowest surface brightness galaxies ever found with µ = 32.3 mag arcsec−2 . This is the largest, most diffuse galaxy known at this luminosity, suggesting possible tidal interactions with its host.
Dwarf galaxies are the most abundant galaxies in the Universe, and their demographics offer a unique probe into galaxy formation and feedback processes, reionization, and the nature of dark matter. The brightest Local Group (LG) galaxies were historically discovered predominantly in visual searches of photographic plates (Shapley 1938a,b; Harrington & Wilson 1950; Wilson 1955; Cannon et al. 1977; Irwin et al. 1990; Ibata et al. 1994). Large digital sky surveys have since allowed for fainter systems to be discovered using statistical matched-filter techniques, identifying faint dwarf galaxies as arcminute-scale overdensities of old, metal poor stars (Willman et al. 2005a,b; Zucker et al. 2006a,b; Belokurov et al. 2006, 2007, 2008, 2009, 2010; Grillmair 2006, 2009; Sakamoto & Hasegawa 2006; Irwin et al. 2007; Walsh et al. 2007). Searches using these matched filter techniques have been applied to the current generation of wide imaging surveys to detect yet fainter and more distant systems (Bechtol et al. 2015; DrlicaWagner et al. 2015; Koposov et al. 2015, 2018; Kim et al. 2015a,b; Kim & Jerjen 2015; Martin et al. 2015; Laevens et al. 2015a,b; Torrealba et al. 2016a,b, 2018, 2019; Homma et al. 2016, 2018, 2019; Luque et al. 2017; Mau et al. 2020; Cerny et al. 2021b, 2022, 2023). Ultra-faint dwarf galaxies (MV ≳ −7.7, Simon 2019) are the most dark matter-dominated systems known and represent the extreme limit of the galaxy formation process, likely inhabiting the lowest-mass dark matter halos capable of hosting star formation (Nadler et al. 2020). Recent systematic searches for ultra-faint Milky Way (MW) satellite galaxies over ∼ 80% of the sky have allowed for robust inferences about the population of such galaxies within the virial radius of the MW (Koposov et al. 2008; Drlica-Wagner et al. 2020). This census has allowed for the first constraints on the galaxy-halo connection for dark matter halos below 108 M⊙, including evidence for the statistical impact of the Large Magellanic Cloud (LMC) on the MW satellite population (Nadler et al. 2020), and limits on the properties of several alternative dark matter models (Newton et al. 2018, 2021; Kim et al. 2018; Nadler et al. 2021; Mau et al. 2022).However, the population of LG galaxies beyond the MW virial radius (300 kpc) is less explored. Dwarf galaxies dominate the universe by number, yet a precise census of these objects remains challenging due to their inherently faint nature and the limited sensitivity of observational surveys. In the nearby universe, these low-luminosity dwarf galaxies are detected in optical imaging surveys as arcminute-scale statistical overdensities of individually resolved stars. Previous searches for distant dwarf galaxies have primarily been targeted searches of the halos of larger host galaxies, typically out to their virial radii. .............
designated DES J0015- 3825, based on a stellar population consistent with the tip of the red giant branch of an old, metal-poor stellar population at a distance of ∼ 2 Mpc (Section 3). We use deeper follow-up DECam images of the candidate to confirm and characterize it. The proximity of DES J0015-3825 to the LMC-mass galaxy NGC 55 suggests the presence of a low luminosity central-satellite system and possible tidal interactions between the two galaxies; we therefore refer to the candidate dwarf galaxy as NGC 55-dw1 throughout this paper. Finally, we discuss the implications for the total galaxy population within 2 Mpc and the outlook for searches with future wide-area imaging surveys (Section 4).
We performed a search over the DES Y6 data for faint field dwarf galaxies with heliocentric distances D = 0.3−2 Mpc using the simple matched-filter search algorithm. This algorithm identifies galaxies as arcminutescale overdensities of individually resolved stars. We assessed the completeness of our search by the injection and recovery of synthetic galaxies inserted into the DES data at the catalog level, with a small number of galaxies being inserted at the image level to assess blending effects. For smaller ultra-faints (physical half-light radius ≲ 100 pc), we expect completeness to roughly MV = −6.5 mag for galaxies with D = 0.5 Mpc and MV = −10.5 mag for galaxies with D = 2 Mpc. For larger galaxies (physical half-light radius ≳ 1000 pc), we expect completeness to roughly MV = −8.5 mag for galaxies with D ≤ 1.0 Mpc and MV = −10.0 mag for galaxies with D = 2 Mpc. We do not find any new dwarf galaxies within our search space. Based on a set of high-resolution cosmological zoom-in simulations of LG-like volumes, this result is not entirely inconsistent with expectations despite these simulations often predicting the existence of several detectable galaxies visible to our survey. With the exception of the unresolved Tucana B, we do recover the known galaxies within our search volume at high significance
Abbott, T. M. C., Adam´ow, M., Aguena, M., et al. 2021, ApJS, 255, 20 Adhikari, S., Dalal, N., & Chamberlain, R. T. 2014, Journal of Cosmology and Astroparticle Physics, 2014, 019 Aihara, H., Armstrong, R., Bickerton, S., et al. 2018, PASJ, 70, S8 Akeson, R., Armus, L., Bachelet, E., et al. 2019, arXiv e-prints, arXiv:1902.05569 Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33 Balbinot, E., Yanny, B., Li, T. S., et al. 2016, ApJ, 820, 58 Bechtol, K., Drlica-Wagner, A., Balbinot, E., et al. 2015, ApJ, 807, 50 Belokurov, V., Zucker, D. B., Evans, N. W., et al. 2006, ApJL, 647, L111 —. 2007, ApJ, 654, 897 Belokurov, V., Walker, M. G., Evans, N. W., et al. 2008, ApJL, 686, L83 —. 2009, MNRAS, 397, 1748 —. 2010, ApJL, 712, L103 Bennet, P., Sand, D. J., Crnojevi´c, D., et al. 2019, The Astrophysical Journal, 885, 153 —. 2020, The Astrophysical Journal Letters, 893, L9 Bertin, E. 2011, in Astronomical Society of the Pacific Conference Series, Vol. 442, Astronomical Data Analysis Software and Systems XX, ed. I. N. Evans, A. Accomazzi, D. J. Mink, & A. H. Rots, 435 Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393 Bica, E., Bonatto, C., Dutra, C. M., & Santos, J. F. C. 2008, MNRAS, 389, 678 Boylan-Kolchin, M., Bullock, J. S., & Kaplinghat, M. 2011, Monthly Notices of the Royal Astronomical Society: Letters, 415, L40 —. 2012, Monthly Notices of the Royal Astronomical Society, 422, 1203 Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127 Burke, D. L., Rykoff, E. S., Allam, S., et al. 2018, AJ, 155, 41 Cannon, R. D., Hawarden, T. G., & Tritton, S. B. 1977, MNRAS, 180, 81P Carlesi, E., et al. 2016, Mon. Not. Roy. Astron. Soc., 458, 900 7 https://github.com/DarkEnergySurvey/ugali Carlin, J. L., Sand, D. J., Price, P., et al. 2016, ApJL, 828, L5 Carlin, J. L., Mutlu-Pakdil, B., Crnojevi´c, D., et al. 2021, ApJ, 909, 211 Carlsten, S. G., Greene, J. E., Beaton, R. L., Danieli, S., & Greco, J. P. 2022, ApJ, 933, 47 Cerny, W., Pace, A. B., Drlica-Wagner, A., et al. 2021a, ApJ, 910, 18 —. 2021b, ApJL, 920, L44 Cerny, W., Mart´ınez-V´azquez, C. E., Drlica-Wagner, A., et al. 2022, arXiv e-prints, arXiv:2209.12422 Cerny, W., Simon, J. D., Li, T. S., et al. 2023, ApJ, 942, 111 Chabrier, G. 2001, ApJ, 554, 1274 Chiboucas, K., Jacobs, B. A., Tully, R. B., & Karachentsev, I. D. 2013, The Astronomical Journal, 146, 126 Collins, M. L. M., Charles, E. J. E., Mart´ınez-Delgado, D., et al. 2022, MNRAS, 515, L72 Collins, M. L. M., Tollerud, E. J., Rich, R. M., et al. 2019, Monthly Notices of the Royal Astronomical Society, 491, 3496 Collins, M. L. M., Read, J. I., Ibata, R. A., et al. 2021, MNRAS, 505, 5686 Collins, M. L. M., Karim, N., Martinez-Delgado, D., et al. 2023, arXiv e-prints, arXiv:2305.13966 Corwin, H. G. 2004, VizieR Online Data Catalog, 7239, 0 Crnojevi´c, D., Sand, D. J., Zaritsky, D., et al. 2016a, ApJL, 824, L14 Crnojevi´c, D., Sand, D. J., Spekkens, K., et al. 2016b, The Astrophysical Journal, 823, 19 Crnojevi´c, D., Sand, D. J., Bennet, P., et al. 2019, ApJ, 872, 80 Dey, A., Schlegel, D. J., Lang, D., et al. 2019, AJ, 157, 168 Diemer, B., & Kravtsov, A. V. 2014, The Astrophysical Journal, 789, 1 Dooley, G. A., Peter, A. H. G., Carlin, J. L., et al. 2017a, MNRAS, 472, 1060 Dooley, G. A., Peter, A. H. G., Yang, T., et al. 2017b, MNRAS, 471, 4894 Drlica-Wagner, A., et al. 2015, ApJ, 813, 109 Drlica-Wagner, A., Bechtol, K., Mau, S., et al. 2020, The Astrophysical Journal, 893, 47 Drlica-Wagner, A., Carlin, J. L., Nidever, D. L., et al. 2021, ApJS, 256, 2 Drlica-Wagner, A., Ferguson, P. S., Adam´ow, M., et al. 2022, arXiv e-prints, arXiv:2203.16565 Distant Dwarfs in DES Y6 17 Euclid Collaboration, Scaramella, R., Amiaux, J., et al. 2022a, A&A, 662, A112 Euclid Collaboration, Borlaff, A. S., G´omez-Alvarez, P., et al. 2022b, A&A, 657, A92 Fattahi, A., Navarro, J. F., & Frenk, C. S. 2020, MNRAS, 493, 2596 Fattahi, A., Navarro, J. F., Sawala, T., et al. 2016, arXiv e-prints, arXiv:1607.06479 Fitts, A., Boylan-Kolchin, M., Bozek, B., et al. 2019, MNRAS, 490, 962 Flaugher, B., Diehl, H. T., Honscheid, K., et al. 2015, AJ, 150, 150 Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306 Fraternali, F., Tolstoy, E., Irwin, M. J., & Cole, A. A. 2009, A&A, 499, 121 Garrison-Kimmel, S., Boylan-Kolchin, M., Bullock, J. S., & Lee, K. 2014, MNRAS, 438, 2578 Garrison-Kimmel, S., Wetzel, A., Bullock, J. S., et al. 2017, MNRAS, 471, 1709 Garrison-Kimmel, S., Wetzel, A., Hopkins, P. F., et al. 2019, MNRAS, 489, 4574 Garrison-Kimmel, S., Hopkins, P. F., Wetzel, A., et al. 2019, Monthly Notices of the Royal Astronomical Society, 487, 1380 Gennaro, M., Tchernyshyov, K., Brown, T. M., et al. 2018a, The Astrophysical Journal, 855, 20 Gennaro, M., Geha, M., Tchernyshyov, K., et al. 2018b, The Astrophysical Journal, 863, 38 Gieren, W., Pietrzy´nski, G., Soszy´nski, I., et al. 2008, ApJ, 672, 266 G´orski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759 Gregory, A. L., Collins, M. L. M., Read, J. I., et al. 2019, Monthly Notices of the Royal Astronomical Society, 485, 2010 Grillmair, C. J. 2006, ApJL, 645, L37 —. 2009, ApJ, 693, 1118 Harrington, R. G., & Wilson, A. G. 1950, PASP, 62, 118 Harris, W. E. 1996, AJ, 112, 1487 Hoffleit, D., & Jaschek, C. 1991, The Bright star catalogue (Yale University Observatory) Homma, D., Chiba, M., Okamoto, S., et al. 2016, ApJ, 832, 21 —. 2018, PASJ, 70, S18 Homma, D., Chiba, M., Komiyama, Y., et al. 2019, PASJ, 71, 94 Honscheid, K., & DePoy, D. L. 2008, arXiv e-prints, arXiv:0810.3600 Hopkins, P. F. 2015, MNRAS, 450, 53 Hopkins, P. F., Kereˇs, D., O˜norbe, J., et al. 2014, Monthly Notices of the Royal Astronomical Society, 445, 581 Hopkins, P. F., Wetzel, A., Kereˇs, D., et al. 2018, MNRAS, 480, 800 Hughes, A. K., Sand, D. J., Seth, A., et al. 2021, ApJ, 914, 16 Hunter, J. D. 2007, Computing in Science and Engineering, 9, 90 Ibata, R. A., Gilmore, G., & Irwin, M. J. 1994, Nature, 370, 194 Irwin, M. J., Bunclark, P. S., Bridgeland, M. T., & McMahon, R. G. 1990, MNRAS, 244, 16P Irwin, M. J., Belokurov, V., Evans, N. W., et al. 2007, ApJL, 656, L13 Ivezi´c, Z., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, ˇ 111 Ji, A. P., Koposov, S. E., Li, T. S., et al. 2021, ApJ, 921, 32 Jones, E., Oliphant, T., & Peterson, P. 2001 Joshi, G. D., Pontzen, A., Agertz, O., et al. 2023, arXiv e-prints, arXiv:2307.02206 Kallivayalil, N., Sales, L. V., Zivick, P., et al. 2018, The Astrophysical Journal, 867, 19 Karachentsev, I. D., et al. 2002, Astron. Astrophys., 389, 812 Kharchenko, N. V., Piskunov, A. E., Schilbach, E., R¨oser, S., & Scholz, R.-D. 2013, A&A, 558, A53 Kim, D., & Jerjen, H. 2015, ApJL, 808, L39 Kim, D., Jerjen, H., Mackey, D., Da Costa, G. S., & Milone, A. P. 2015a, ApJL, 804, L44 Kim, D., Jerjen, H., Milone, A. P., Mackey, D., & Da Costa, G. S. 2015b, ApJ, 803, 63 Kim, S. Y., Peter, A. H. G., & Hargis, J. R. 2018, PhRvL, 121, 211302 Koposov, S., Belokurov, V., Evans, N. W., et al. 2008, ApJ, 686, 279 Koposov, S. E., Belokurov, V., Torrealba, G., & Evans, N. W. 2015, ApJ, 805, 130 Koposov, S. E., Irwin, M., Belokurov, V., et al. 2014, MNRAS, 442, L85 Koposov, S. E., Walker, M. G., Belokurov, V., et al. 2018, MNRAS, 479, 5343 Kudritzki, R. P., Castro, N., Urbaneja, M. A., et al. 2016, ApJ, 829, 70 Laevens, B. P. M., Martin, N. F., Ibata, R. A., et al. 2015a, ApJL, 802, L18 Laevens, B. P. M., Martin, N. F., Bernard, E. J., et al. 2015b, ApJ, 813, 44 Libeskind, N. I., Carlesi, E., Grand, R. J. J., et al. 2020, MNRAS, 498, 2968 18 McNanna et al. Loveday, J., Norberg, P., Baldry, I. K., et al. 2015, MNRAS, 451, 1540 Luque, E., Pieres, A., Santiago, B., et al. 2017, MNRAS, 468, 97 Martin, N. F., McConnachie, A. W., Irwin, M., et al. 2009, ApJ, 705, 758 Martin, N. F., Slater, C. T., Schlafly, E. F., et al. 2013, ApJ, 772, 15 Martin, N. F., Nidever, D. L., Besla, G., et al. 2015, ApJL, 804, L5 Martin, N. F., Ibata, R. A., Lewis, G. F., et al. 2016, ApJ, 833, 167 Mart´ınez-Delgado, D., Karim, N., Charles, E. J. E., et al. 2022, MNRAS, 509, 16 Mart´ınez-Delgado, D., Grebel, E. K., Javanmardi, B., et al. 2018, A&A, 620, A126 Mart´ınez-Delgado, D., Makarov, D., Javanmardi, B., et al. 2021, A&A, 652, A48 Mart´ınez-V´azquez, C. E., Monelli, M., Cassisi, S., et al. 2021, MNRAS, 508, 1064 Mau, S., Cerny, W., Pace, A. B., et al. 2020, ApJ, 890, 136 Mau, S., Nadler, E. O., Wechsler, R. H., et al. 2022, ApJ, 932, 128 McConnachie, A. W. 2012, AJ, 144, 4 McConnachie, A. W., Huxor, A., Martin, N. F., et al. 2008, ApJ, 688, 1009 McConnachie, A. W., Irwin, M. J., Ibata, R. A., et al. 2009, Nature, 461, 66 McQuinn, K. B. W., Mao, Y.-Y., Buckley, M. R., et al. 2023a, ApJ, 944, 14 McQuinn, K. B. W., Mao, Y.-Y., Cohen, R. E., et al. 2023b, arXiv e-prints, arXiv:2307.08738 Merritt, A., van Dokkum, P., & Abraham, R. 2014, ApJL, 787, L37 More, S., Diemer, B., & Kravtsov, A. V. 2015, The Astrophysical Journal, 810, 36 Morganson, E., Gruendl, R. A., Menanteau, F., et al. 2018, PASP, 130, 074501 M¨uller, O., Rejkuba, M., Pawlowski, M. S., et al. 2019, A&A, 629, A18 Mutlu-Pakdil, B., Sand, D. J., Crnojevi´c, D., et al. 2021, ApJ, 918, 88 —. 2022, ApJ, 926, 77 Nadler, E. O., Mao, Y.-Y., Green, G. M., & Wechsler, R. H. 2019, Astrophys. J., 873, 34 Nadler, E. O., Mao, Y.-Y., Wechsler, R. H., Garrison-Kimmel, S., & Wetzel, A. 2018, ApJ, 859, 129 Nadler, E. O., Wechsler, R. H., Bechtol, K., et al. 2020, The Astrophysical Journal, 893, 48 Nadler, E. O., Drlica-Wagner, A., Bechtol, K., et al. 2021, Phys. Rev. Lett., 126, 091101 Nadler, E. O., et al. 2023, Astrophys. J., 945, 159 Newton, O., Cautun, M., Jenkins, A., Frenk, C. S., & Helly, J. C. 2018, MNRAS, 479, 2853 Newton, O., Leo, M., Cautun, M., et al. 2021, JCAP, 2021, 062 Newton, O., Libeskind, N. I., Knebe, A., et al. 2022, Monthly Notices of the Royal Astronomical Society, 514, 3612 Newton, O., Di Cintio, A., Cardona-Barrero, S., et al. 2023, ApJL, 946, L37 Nilson, P. 1973, Uppsala general catalogue of galaxies (Uppsala: Roy. Soc. Sci. Uppsala) Papastergis, E., Giovanelli, R., Haynes, M. P., & Shankar, F. 2015, A&A, 574, A113 Papastergis, E., & Shankar, F. 2016, A&A, 591, A58 Pardo, K., & Dor´e, O. 2021, PhRvD, 104, 103531 Patel, E., Kallivayalil, N., Garavito-Camargo, N., et al. 2020, ApJ, 893, 121 Pearson, S., Clark, S. E., Demirjian, A. J., et al. 2022, ApJ, 926, 166 Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, Journal of Machine Learning Research, 12, 2825 Plummer, H. C. 1911, MNRAS, 71, 460 Racca, G. D., Laureijs, R., Stagnaro, L., et al. 2016, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, ed. H. A. MacEwen, G. G. Fazio, M. Lystrup, N. Batalha, N. Siegler, & E. C. Tong, 99040O Robles, V. H., Bullock, J. S., Elbert, O. D., et al. 2017, MNRAS, 472, 2945 Rykoff, E. S., Tucker, D. L., Burke, D. L., et al. 2023, arXiv e-prints, arXiv:2305.01695 Sakamoto, T., & Hasegawa, T. 2006, ApJL, 653, L29 Sand, D. J., Seth, A., Olszewski, E. W., et al. 2010, The Astrophysical Journal, 718, 530 Sand, D. J., Crnojevi´c, D., Strader, J., et al. 2014, The Astrophysical Journal Letters, 793, L7 Sand, D. J., Mutlu-Pakdil, B., Jones, M. G., et al. 2022, ApJL, 935, L17 Sanders, J. L., Evans, N. W., & Dehnen, W. 2018, MNRAS, 478, 3879 Santos-Santos, I. M. E., Navarro, J. F., & McConnachie, A. 2023, MNRAS, 520, 55 Sawala, T., McAlpine, S., Jasche, J., et al. 2022, MNRAS, 509, 1432 Distant Dwarfs in DES Y6 19 Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525 Sevilla-Noarbe, I., Bechtol, K., Carrasco Kind, M., et al. 2021, ApJS, 254, 24 Shapley, H. 1938a, Harvard College Observatory Bulletin, 908, 1 —. 1938b, Nature, 142, 715 Shipp, N., Drlica-Wagner, A., Balbinot, E., et al. 2018, ApJ, 862, 114 Simon, J. D. 2019, ARA&A, 57, 375 Smercina, A., Bell, E. F., Price, P. A., et al. 2018, ApJ, 863, 152 Taibi, S., Battaglia, G., Rejkuba, M., et al. 2020, A&A, 635, A152 Tanaka, M., Chiba, M., Komiyama, Y., Guhathakurta, P., & Kalirai, J. S. 2011, ApJ, 738, 150 Tavangar, K., Ferguson, P., Shipp, N., et al. 2022, ApJ, 925, 118 Taylor, M. A., Eigenthaler, P., Puzia, T. H., et al. 2018, The Astrophysical Journal Letters, 867, L15 Toloba, E., Sand, D. J., Spekkens, K., et al. 2016, ApJL, 816, L5 Torrealba, G., Koposov, S. E., Belokurov, V., & Irwin, M. 2016a, MNRAS, 459, 2370 Torrealba, G., Koposov, S. E., Belokurov, V., et al. 2016b, MNRAS, 463, 712 Torrealba, G., Belokurov, V., Koposov, S. E., et al. 2018, MNRAS, 475, 5085 —. 2019, MNRAS, 488, 2743 van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Computing in Science and Engineering, 13, 22 Vivas, A. K., Mart´ınez-V´azquez, C. E., Walker, A. R., et al. 2022, ApJ, 926, 78 Walsh, S. M., Jerjen, H., & Willman, B. 2007, ApJL, 662, L83 Walsh, S. M., Willman, B., & Jerjen, H. 2009, AJ, 137, 450 Wang, M. Y., de Boer, T., Pieres, A., et al. 2019, ApJ, 881, 118 Webbink, R. F. 1985, in IAU Symposium, Vol. 113, Dynamics of Star Clusters, ed. J. Goodman & P. Hut, 541–577 Wechsler, R. H., & Tinker, J. L. 2018, Ann. Rev. Astron. Astrophys., 56, 435 Wetzel, A., Hayward, C. C., Sanderson, R. E., et al. 2023, ApJS, 265, 44 WFIRST Astrometry Working Group, Sanderson, R. E., Bellini, A., et al. 2019, Journal of Astronomical Telescopes, Instruments, and Systems, 5, 044005 Willman, B., Blanton, M. R., West, A. A., et al. 2005a, AJ, 129, 2692 Willman, B., Dalcanton, J. J., Martinez-Delgado, D., et al. 2005b, ApJL, 626, L85 Wilson, A. G. 1955, PASP, 67, 27 Yang, D., Nadler, E. O., & Yu, H.-b. 2022, arXiv e-prints, arXiv:2211.13768 Zucker, D. B., Belokurov, V., Evans, N. W., et al. 2006a, ApJL, 650, L41 —. 2006b, ApJL, 643, L103