top of page
ORCID_iD.svg.png

PTL LOCKED

Tphysicsletters/6981/1296/Calculation of the Hubble Constant, the Minimum Mass, and the Proton

Theoretical Physics Letters.png

Friday, June 2, 2023 at 6:30:00 AM UTC

Request Open

Calculation of the Hubble Constant, the Minimum Mass, and the Proton Charge Radius Using the Dirac’s Hypothesis on the Ratio of the Electrostatic Force to the Gravitational Force

Paul Talbot
Theoretical Physics Letters

2023 ° 02(06) ° 0631-1296

https://www.wikipt.org/tphysicsletters

DOI: 10.1490/369869.0692tpl

Unlock Only

Changeover the Schrödinger Equation

This option will drive you towards only the selected publication. If you want to save money then choose the full access plan from the right side.

Unlock all

Get access to entire database

This option will unlock the entire database of us to you without any limitations for a specific time period.
This offer is limited to 100000 clients if you make delay further, the offer slots will be booked soon. Afterwards, the prices will be 50% hiked.

Newsletters
Abstract

This publication suggests that some physical values could be calculated using the Dirac’s hypothesis on the observed ratio of the electrostatic force to the gravitational force. The calculated value of the Hubble constant is H ≈ 72.013 km s‑1 Mpc‑1 and that of the minimum mass, Mmin ≈ 1.720 6 × 10‑68 kg. Recent observations suggest that the proton charge radius could also be calculated using an additional but related assumption: rp ≈ 0.826 4 fm.

Introduction


Currently, the local value of the Hubble constant is determined by observation. The observed values are more or less precise, and oscillate between 70 km s‑1 Mpc-1 and 74 km s‑1 Mpc-1, depending on the techniques used (Riess et al., 2022) (Freedman, 2021) (Khetan et al., 2021) (Liao et al., 2020) (Pesce et al., 2020) (Yang et al., 2020). We know that some physical quantities are limited by minimum values. For example, the quantum of action h is the minimum value of action. The elementary charge e can also be regarded as the minimum charge. Quarks are associated with a fractional charge, but they are confined inside hadrons, which do have an integer charge (Perl et al., 2004).

Conclusion

Using the observed ratio of the electrostatic force to the gravitational force, the assumed relation Eq. 6 allows precisely calculating the Hubble constant and the minimum mass. These values agree with observation and previous works. Recent observations suggest that the proton charge radius could also be calculated using an additional but related assumption (Eq. 16). It is unlikely that an arbitrary value of Eep could lead to such consistent results. More precise observed values of H and rp could confirm or refute some of these hypotheses.

No posts published in this language yet
Once posts are published, you’ll see them here.
References

Berman , M. (1992). Large number hypothesis. International Journal of Theoretical Physics, 31, 1447-1450. doi:10.1007/BF00673977
Beyer, A., Maisenbacher, L., Matveev, A., Pohl, R., Khabarova, K., Grinin, A., . . . Udem, T. (2017). The Rydberg constant and proton size from atomic hydrogen. Science, 358, 79-85. doi:10.1126/science.aah6677
Bezginov, N., Valdez, T., Horbatsch, M., Marsmsn, A., Vuta, A., & Hessels, E. (2019). A Measurement of the Atomic Hydrogen Lamb Shift and the Proton Charge Radius. Science, 365, 1007-1012. doi:10.1126/science.aau7807
Cetto, A., Peña, L. d., & Santos, E. (1986). Dirac’s large-number hypothesis revised. Astronomy and Astrophysics, 164, Bibcode: 1986A&A...164....1C, 1-5.
Dirac, P. A. (1938). A new basis for cosmology. Proceedings of the Royal Society of London, 165, 199-208. doi:10.1098/rspa.1938.0053
Dirac, P. A. (1974). Cosmological Models and the Large Numbers Hypothesis. Proceedings of the Royal Society of London, 338, 439-446. doi:10.1098/rspa.1974.0095
Dirac, P. A. (1979). The Large Numbers hypothesis and the Einstein theory of gravitation. Proceedings of the Royal Society(365), 19-30. doi:10.1098/rspa.1979.0003
Djukanovic, D., Harris, T., von Hippel, G., Junnarkar, P., Meyer, H., Mohler, D., . . . Wilhelm, J. (2021). Isovector electromagnetic form factors of the nucleon from lattice QCD and the proton radius puzzle. Physical Review D, 103(094522), 25. doi:10.48550/arXiv.2102.07460
Freedman, W. (2021). Measurements of the Hubble Constant: Tensions in Perspective. The Astrophysical Journal, 919:16, 22. doi:10.3847/1538-4357/ac0e95
Khetan, N., Izzo, L., Branchesi, M., Wojtak, R., Cantiello, M., Murugeshan, C., . . . Valenti, S. (2021). A new measurement of the Hubble constant using Type Ia supernovae calibrated with surface brightness fluctuations. Astronomy & Astrophysics, 647(A72), 20. doi:10.1051/0004-6361/202039196
Kritov, A. (2021). Explicit Values for Gravitational and Hubble Constants from Cosmological Entropy Bound and Alpha-Quantization of Particle Masses. Progress in Physics, 17, ISSN: 1555-5615 (online), Corpus ID: 245259641, 158-163.
Lau, Y., & Prokhovnik, S. J. (1986). The Large Numbers Hypothesis and a Relativistic Theory of Gravitation. Australian Journal of Physics, 39, 339-346. doi:10.1071/PH860339
Liao, K., Shafieloo, A., Keeley, R. E., & Linder, E. V. (2020). A Model-independent Determination of the Hubble Constant from Lensed Quasarsand Supernovae Using Gaussian Process Regression. The Astrophysical Journal Letters, 886(L23), 7. doi:10.3847/2041-8213/ab5308
Lusso, E., Piedipalumbo, E., Risaliti, G., Paolillo, M., Bisogni, S., Nardini, E., & Amati, L. (2019). Tension with the flat ΛCDM model from a high-redshift Hubble diagram of supernovae, quasars, and gamma-ray bursts. Astronomy & Astrophysics, 628(L4), 5. doi:10.1051/0004-6361/201936223
Mercier, C. (2019). Calculation of the Universal Gravitational Constant, of the Hubble Constant, and of the Average CMB Temperature. Journal of Modern Physics, 10, 641-662. doi:10.4236/jmp.2019.106046
Perl, M. L., Lee, E. R., & Loomba, D. (2004). A Brief Review of the Search for Isolatable Fractional Charge Elementary Particles. Modern Physics Letters, 19.35, 16. doi:10.1142/S0217732304016019
Pesce, D. W., Braatz, J. A., Reid, M. J., Riess, A. G., Scolnic, D., Condon, J., . . . Lo, K. (2020). The Megamaser Cosmology Project. XIII. Combined Hubble Constant Constraints. The Astrophysical Journal Letters, 891(L1), 9. doi:10.3847/2041-8213/ab75f0
Riess, A., Wenlong, Y., Lucas, M., Macri, M., Scolnic, D., Brout, D., . . . Zheng, W. (2022). A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s-1 Mpc-1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. The Astrophysical Journal Letters, 934, 52. doi:10.3847/2041-8213/ac5c5b
Rushdi, M. A., & Rushdi, A. M. (2016). On the Fundamental Masses Derivable by Dimensional Analysis. Journal of King Abdulaziz University : Engineering Sciences, 27, 35-42. doi:10.4197/Eng.27-1.3
Saibal Ray, Utpal Mukhopadhyay, Soham Ray, & Arjak Bhattacharjee. (2019). Dirac's large number hypothesis: A journey from concept to implication. International Journal of Modern Physics D, 28(08). doi:10.1142/S0218271819300143
Shuntov, M. (2018). Unveiling the Concordance Model of Cosmology. Marseille: Aix Marseille Universit´e. doi:10.13140/RG.2.2.30613.83688
Talbot, P. (2021). The Cosmopheric Principle. St-Hubert, Qc, Canada: Paul Talbot (Amazon), ISBN: 978-2-9819000-3-6, pp: 97-100.
Valev, D. (2008). Neutino and Gravito Mass Estimations by a Phenomenological Approach. Aerospace Research in Bulgaria, 22. doi:10.48550/arXiv.hep-ph/0507255
Valev, D. (2013). Three Fundamental Masses Derived by Dimensional Analysis. Space Science International, 145-149. doi:10.3844/ajssp.2013.145.149
Valev, D. (2015). Estimations of Neutrino and Graviton Masses by a Phenomenological Mass Relation for Stable Particles. Physics International, 82-88. doi:10.3844/pisp.2015.82.88
Wesson, P. S. (2004). Is mass quantized. Modern Physics Letters A, 19(26), 15. doi:10.1142/S0217732304015270
Wilmot , R. G. (2021). Exact Value of the Hubble Constant - The Most Precise Value of the Hubble Constant Deduced from Other Constants of Physics. ResearchGate, 28. doi:10.13140/RG.2.2.25508.60802
Wolf, C. G. (2022). Hubble constant H0 is derived from Newtonian gravitational constant G, speed of light in vacuum c, electron mass me, classical electron radius re squared and fine structure constant α. ResearchGate, 7. Récupéré sur 10.13140/RG.2.2.15487.48801
Xiong, W., Gasparian, A., Gao, H., Dutta, D., Khandaker, M., Liyanage, N., . . . Zhao, Z. (2019). A Small Proton Charge Radius From an Electron–Proton Scattering Experiment. Nature, 575, 147–150. doi:10.1038/s41586-019-1721-2
Yang, T., Birrer, S., & Hu, B. (2020). The first simultaneous measurement of Hubble constant and post-Newtonian parameter from Time-Delay Strong Lensing. (O. Academic, Éd.) Monthly Notices of the Royal Astronomical Society, 497, 56-61. doi:10.1093/mnrasl/slaa107

Abstract
Introduction
Conclusion
References

All Products

bottom of page