top of page
ORCID_iD.svg.png

Locked

Tphysicsletters/6879/10/1490/584587tpl/Rapid neutron star cooling triggered by accumulated dark matter

Theoretical Physics Letters.png

Sunday, September 10, 2023 at 12:45:00 PM UTC

Request Open

Article Rating by Publisher
10
Astrophysics Experimental
Article Rating by Readers
9
Premium

Rapid neutron star cooling triggered by accumulated dark matter

Afonso Avila ´ 1 ∗ Edoardo Giangrandi1,2 † Violetta Sagun1 ‡ Oleksii Ivanytskyi3 § and Constan¸ca Providˆencia 1¶ ---------------------------------------- 1CFisUC, Department of Physics, University of Coimbra, Rua Larga P-3004-516, Coimbra, Portugal 2 Institut f¨ur Physik und Astronomie, Universit¨at Potsdam, Karl-Liebknecht-Str.24-25, Potsdam, Germany and 3 Incubator of Scientific Excellence—Centre for Simulations of Superdense Fluids, University of Wroc law, 50-204, Wroclaw, Poland
Theoretical Physics Letters

2023 ° 10(09) ° 0631-9870

https://www.wikipt.org/tphysicsletters

DOI: https://www.doi.wikipt.org/10/1490/584587tpl

Acknowledgement
The work is supported by the FCT – Funda¸c˜ao para a Ciˆencia e a Tecnologia, within the project No. EXPL/FIS-AST/0735/2021. A.A., E.G., V.S., and ´ C.P. acknowledge the support from FCT within the projects No. UIDB/04564/2020, UIDP/04564/2020. E.G. also acknowledges the support from Project No. PRT/BD/152267/2021. C.P. is supported by project No. PTDC/FIS-AST/28920/2017. The work of O.I. was supported by the program Excellence Initiative–Research University of the University of Wroc law of the Ministry of Education and Science.

Unlock Only

Changeover the Schrödinger Equation

This option will drive you towards only the selected publication. If you want to save money then choose the full access plan from the right side.

Unlock all

Get access to entire database

This option will unlock the entire database of us to you without any limitations for a specific time period.
This offer is limited to 100000 clients if you make delay further, the offer slots will be booked soon. Afterwards, the prices will be 50% hiked.

Newsletters
Abstract
We study the effect of asymmetric fermionic dark matter (DM) on the thermal evolution of neutron stars (NSs). No interaction between DM and baryonic matter is assumed, except the gravitational one. Using the two-fluid formalism, we show that DM accumulated in the core of a star pulls inwards the outer baryonic layers of the star, increasing the baryonic density in the NS core. As a result, it significantly affects the star’s thermal evolution by triggering an early onset of the dir ect Urca process and modifying the photon emission from the surface caused by the decrease of the radius. Thus, due to the gravitational pull of DM, the direct Urca process becomes kinematically allowed for stars with lower masses. Based on these results, we discuss the importance of NS observations at different distances from the Galactic center. Since the DM distribution peaks towards the Galactic center, NSs in this region are expected to contain higher DM fractions that could lead to a different cooling behavior.

Introduction
Extremely high gravitational field and compactness inside neutron stars (NSs) make them a perfect laboratory to study the strongly interacting matter, test General Relativity and physics beyond the Standard Model [1, 2]. Throughout the entire stellar evolution, NSs could accumulate a sizeable amount of dark matter (DM) in their interior, which will impact the matter distribution, masses, radii, etc. [3–7]. At the end of its evolution, a main sequence star of 8-20 M⊙ undergoes a supernova explosion, creating an NS [8]. The former is from the gravitational collapse of molecular cloud regions, which exceed the Jeans limit. The proto-cloud may already present traces of DM, facilitating the collapse and giving rise to newly born stars with a sizeable amount of DM [9]. Once the star is born, DM particles could be further accreted from a surrounding medium, leading to an even higher DM fraction inside the object [10, 11]. At the end of the stellar evolution, the star eventually reaches the iron-core stage, undergoing a core-collapse supernova explosion. During this incredibly energetic event, DM might be created and further accrued inside the remnant, i.e. an NS [12]. More exotic scenarios can also be taken into account, e.g. mergers of baryonic matter (BM) stars with boson stars, and accretion of DM clumps [13]. Once the DM is trapped in the gravitational field of an NS, it may lead to different configurations depending on the DM properties: a core or halo configuration. In the former scenario, DM forms a compact core in the inner regions of an NS. A stronger gravitational pull by the inner

Conclusion
In this study, we focus on the effects of asymmetric fermionic DM on the NS thermal evolution. Despite asymmetric DM that interacts with BM only gravitationally contributes neither to neutrino, and photon emission directly nor deposits energy to the system, it alters the thermal evolution of NSs indirectly. We demonstrate that an accumulated DM pulls inwards BM from the outer layers, significantly increasing the central density, hence modifying the BM distribution. Consequently, the onset of the DU process is triggered at lower NS masses, leading to a highly efficient and rapid cooling, which is substantially different from the case when it is forbidden. At the same time, the proton fraction corresponding to the DU onset remains the same, as for the pure BM star with the same central BM density. We show that despite the DU process is kinematically allowed only at 1.91 M⊙ for the IST EoS and 1.92 M⊙ for the FSU2R EoS, an accumulation of DM particles with mχ = 1 GeV of fχ ≃ 0.161% (IST EoS) and fχ = 0.378% (FSU2R EoS) triggers the previously forbidden process. An increase of the DM particle’s mass mχ ≥ 3 GeV and/or DM fraction fχ ≥ 2 % shifts the DU onset even below 1.6 M⊙. This effect is also illustrated on the compact object in the center of the Cas A. Indeed, the surface temperature drop of Cas A could be explained by the rapid DU cooling triggered at a lower mass in comparison to the pure BM star. An additional effect of DM is related to the pull of BM inward, creating a more compact core and reduction of the baryonic radius. Thus, the total surface of the star is reduced leading to a lower photon luminosity. This effect is clearly visible at the photon-dominated stage when the neutrino emission takes a subdominant role.

No posts published in this language yet
Once posts are published, you’ll see them here.
References
[1] G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song, and T. Takatsuka, Rept. Prog. Phys. 81, 056902 (2018), [2] M. Kramer et al., Phys. Rev. X 11, 041050 (2021), arXiv:2112.06795 [astro-ph.HE]. [3] O. Ivanytskyi, V. Sagun, and I. Lopes, Phys. Rev. D 102, 063028 (2020), arXiv:1910.09925 [astro-ph.HE]. [4] V. Sagun, E. Giangrandi, O. Ivanytskyi, I. Lopes, and K. A. Bugaev, PoS PANIC2021, 313 (2022), arXiv:2111.13289 [astro-ph.HE]. [5] E. Giangrandi, V. Sagun, O. Ivanytskyi, C. Providˆencia, and T. Dietrich, Astrophys. J. 953, 115 (2023), arXiv:2209.10905 [astro-ph.HE]. [6] R. F. Diedrichs, N. Becker, C. Jockel, J.-E. Christian, L. Sagunski, and J. Schaffner-Bielich, arxiv (2023), arXiv:2303.04089 [gr-qc]. [7] D. R. Karkevandi, S. Shakeri, V. Sagun, and O. Ivanytskyi, Phys. Rev. D 105, 023001 (2022), arXiv:2109.03801 [astro-ph.HE]. [8] A. Heger, C. L. Fryer, S. E. Woosley, N. Langer, and D. H. Hartmann, The Astrophysical Journal 591, 288 (2003). [9] W. Yang, H. Chen, and S. Liu, AIP Adv. 10, 075003 (2020). [10] R. Brito, V. Cardoso, and H. Okawa, Physical Review Letters 115 (2015), 10.1103/physrevlett.115.111301. [11] C. Kouvaris and P. Tinyakov, Phys. Rev. D 83, 083512 (2011), arXiv:1012.2039 [astro-ph.HE]. [12] M. Meyer and T. Petrushevska, Phys. Rev. Lett. 124, 231101 (2020), [Erratum: Phys.Rev.Lett. 125, 119901 (2020)], arXiv:2006.06722 [astro-ph.HE]. [13] Y. Dengler, J. Schaffner-Bielich, and L. Tolos, Phys. Rev. D 103, 109901 (2021). [14] J. Ellis, A. Hektor, G. H¨utsi, K. Kannike, L. Marzola, M. Raidal, and V. Vaskonen, Phys. Lett. B 781, 607 (2018), arXiv:1710.05540 [astro-ph.CO]. [15] M. Bezares, D. Vigan`o, and C. Palenzuela, Phys. Rev. D 100, 044049 (2019), arXiv:1905.08551 [gr-qc]. [16] G. F. Giudice, M. McCullough, and A. Urbano, JCAP 10, 001 (2016), arXiv:1605.01209 [hep-ph]. [17] M. Emma, F. Schianchi, F. Pannarale, V. Sagun, and T. Dietrich, Particles 5, 273 (2022), arXiv:2206.10887 [grqc]. [18] M. Punturo et al., Class. Quant. Grav. 27, 194002 (2010). [19] C. Mills, V. Tiwari, and S. Fairhurst, Phys. Rev. D 97, 104064 (2018), arXiv:1708.00806 [gr-qc]. [20] K. Ackley et al., Publ. Astron. Soc. Austral. 37, e047 (2020), arXiv:2007.03128 [astro-ph.HE]. [21] V. Sagun, E. Giangrandi, O. Ivanytskyi, C. Providˆencia, and T. Dietrich, EPJ Web Conf. 274, 07009 (2022), arXiv:2211.10510 [astro-ph.HE]. [22] S. Shakeri and D. R. Karkevandi, arxiv (2022), arXiv:2210.17308 [astro-ph.HE]. [23] T. Sales, O. Louren¸co, M. Dutra, and R. Negreiros, Astron. Astrophys. 642, A42 (2020), arXiv:2004.05019 [astro-ph.HE]. [24] D. Page, J. M. Lattimer, M. Prakash, and A. W. Steiner, Astrophys. J. Suppl. 155, 623 (2004), arXiv:astroph/0403657. [25] J. M. Lattimer, K. A. van Riper, M. Prakash, and M. Prakash, Astrophys. J. 425, 802 (1994). [26] D. Page, U. Geppert, and F. Weber, Nucl. Phys. A 777, 497 (2006), arXiv:astro-ph/0508056. [27] J. M. Lattimer, M. Prakash, C. J. Pethick, and P. Haensel, Phys. Rev. Lett. 66, 2701 (1991). [28] A. Y. Potekhin, J. A. Pons, and D. Page, Space Sci. Rev. 191, 239 (2015), arXiv:1507.06186 [astro-ph.HE]. [29] R. Wijnands, N. Degenaar, and D. Page, J. Astrophys. Astron. 38, 49 (2017), arXiv:1709.07034 [astro-ph.HE]. 10 [30] D. N. Aguilera, J. A. Pons, and J. A. Miralles, Astrophys. J. Lett. 673, L167 (2008), arXiv:0712.1353 [astroph]. [31] G. Baym, D. Beck, P. Geltenbort, and J. Shelton, Physical Review Letters 121 (2018), 10.1103/physrevlett.121.061801. [32] T. F. Motta, P. A. M. Guichon, and A. W. Thomas, Journal of Physics G: Nuclear and Particle Physics 45, 05LT01 (2018). [33] T. F. Motta, P. A. M. Guichon, and A. W. Thomas, International Journal of Modern Physics A 33, 1844020 (2018). [34] J. M. Berryman, S. Gardner, and M. Zakeri, Symmetry 14, 518 (2022), arXiv:2201.02637 [hep-ph]. [35] R. Garani and S. Palomares-Ruiz, JCAP 05, 042 (2022), arXiv:2104.12757 [hep-ph]. [36] T. Dietrich and K. Clough, Phys. Rev. D 100, 083005 (2019), arXiv:1909.01278 [gr-qc]. [37] A. Sedrakian, Phys. Rev. D 93, 065044 (2016), arXiv:1512.07828 [astro-ph.HE]. [38] M. Buschmann, R. T. Co, C. Dessert, and B. R. Safdi, Phys. Rev. Lett. 126, 021102 (2021), arXiv:1910.04164 [hep-ph]. [39] M. Buschmann, C. Dessert, J. W. Foster, A. J. Long, and B. R. Safdi, Phys. Rev. Lett. 128, 091102 (2022), arXiv:2111.09892 [hep-ph]. [40] A. de Lavallaz and M. Fairbairn, Phys. Rev. D 81, 123521 (2010), arXiv:1004.0629 [astro-ph.GA]. [41] M. Angeles P´erez-Garc´ıa, H. Grigorian, C. Albertus, ´ D. Barba, and J. Silk, Phys. Lett. B 827, 136937 (2022), arXiv:2202.00702 [hep-ph]. [42] K. Hamaguchi, N. Nagata, and K. Yanagi, Phys. Lett. B 795, 484 (2019), arXiv:1905.02991 [hep-ph]. [43] C. Kouvaris, Physical Review D 77 (2008), 10.1103/physrevd.77.023006. [44] S. Chatterjee, R. Garani, R. K. Jain, B. Kanodia, M. S. N. Kumar, and S. K. Vempati, Phys. Rev. D 108, L021301 (2023), arXiv:2205.05048 [astro-ph.HE]. [45] V. V. Sagun, A. I. Ivanytskyi, K. A. Bugaev, and I. N. Mishustin, Nucl. Phys. A 924, 24 (2014), arXiv:1306.2372 [nucl-th]. [46] V. V. Sagun, K. A. Bugaev, A. I. Ivanytskyi, I. P. Yakimenko, E. G. Nikonov, A. V. Taranenko, C. Greiner, D. B. Blaschke, and G. M. Zinovjev, Eur. Phys. J. A 54, 100 (2018), arXiv:1703.00049 [hep-ph]. [47] K. A. Bugaev et al., Int. J. Mod. Phys. A 36, 2141009 (2021), arXiv:2104.05351 [hep-ph]. [48] V. V. Sagun, K. A. Bugaiev, A. I. Ivanytskyi, D. R. Oliinychenko, and I. N. Mishustin, EPJ Web Conf. 137, 09007 (2017), arXiv:1611.07071 [nucl-th]. [49] V. V. Sagun, I. Lopes, and A. I. Ivanytskyi, Astrophys. J. 871, 157 (2019), arXiv:1805.04976 [astro-ph.HE]. [50] V. Sagun, G. Panotopoulos, and I. Lopes, Phys. Rev. D 101, 063025 (2020). [51] L. Tolos, M. Centelles, and A. Ramos, Publ. Astron. Soc. Austral. 34, e065 (2017), arXiv:1708.08681 [astroph.HE]. [52] W.-C. Chen and J. Piekarewicz, Phys. Rev. C 90, 044305 (2014), arXiv:1408.4159 [nucl-th]. [53] P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 1592 (2002), arXiv:nucl-th/0208016. [54] A. I. Ivanytskyi, K. A. Bugaev, V. V. Sagun, L. V. Bravina, and E. E. Zabrodin, Phys. Rev. C 97, 064905 (2018), arXiv:1710.08218 [nucl-th]. [55] B. P. Abbott et al. (The LIGO Scientific Collaboration and the Virgo Collaboration), Phys. Rev. Lett. 121, 1611012013Sci...340..448A (2018). [56] B. P. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 892, L3 (2020), arXiv:2001.01761 [astro-ph.HE]. [57] M. C. Miller et al., Astrophys. J. Lett. 887, L24 (2019), arXiv:1912.05705 [astro-ph.HE]. [58] T. E. Riley et al., Astrophys. J. Lett. 887, L21 (2019), arXiv:1912.05702 [astro-ph.HE]. [59] G. Raaijmakers et al., Astrophys. J. Lett. 893, L21 (2020), arXiv:1912.11031 [astro-ph.HE]. [60] M. C. Miller et al., Astrophys. J. Lett. 918, L28 (2021), arXiv:2105.06979 [astro-ph.HE]. [61] T. E. Riley et al., Astrophys. J. Lett. 918, L27 (2021), arXiv:2105.06980 [astro-ph.HE]. [62] P. Haensel and J. L. Zdunik, Astron. and Astrophys. 227, 431 (1990). [63] J. W. Negele and D. Vautherin, Nucl. Phys. A 207, 298 (1973). [64] A. Nelson, S. Reddy, and D. Zhou, JCAP 07, 012 (2019), arXiv:1803.03266 [hep-ph]. [65] R. C. Tolman, Phys. Rev. 55, 364 (1939). [66] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939). [67] J. Antoniadis et al., Science 340, 6131 (2013), arXiv:1304.6875 [astro-ph.HE]. [68] R. W. Romani, D. Kandel, A. V. Filippenko, T. G. Brink, and W. Zheng, Astrophys. J. Lett. 908, L46 (2021), arXiv:2101.09822 [astro-ph.HE]. [69] R. W. Romani, D. Kandel, A. V. Filippenko, T. G. Brink, and W. Zheng, Astrophys. J. Lett. 934, L17 (2022), arXiv:2207.05124 [astro-ph.HE]. [70] G. Raaijmakers, S. K. Greif, K. Hebeler, T. Hinderer, S. Nissanke, A. Schwenk, T. E. Riley, A. L. Watts, J. M. Lattimer, and W. C. G. Ho, Astrophys. J. Lett. 918, L29 (2021), arXiv:2105.06981 [astro-ph.HE]. [71] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 121, 161101 (2018), arXiv:1805.11581 [gr-qc]. [72] V. Doroshenko, V. Suleimanov, G. P¨uhlhofer, and et al., Nature Astronomy 6, 1444 (2022). [73] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957). [74] D. Page, “NSCool: Neutron star cooling code,” Astrophysics Source Code Library, record ascl:1609.009 (2016), ascl:1609.009. [75] W. C. G. Ho, K. G. Elshamouty, C. O. Heinke, and A. Y. Potekhin, Phys. Rev. C 91, 015806 (2015), arXiv:1412.7759 [astro-ph.HE]. [76] M. V. Beznogov and D. G. Yakovlev, Mon. Not. Roy. Astron. Soc. 447, 1598 (2015), arXiv:1411.6803 [astroph.SR]. [77] R. Negreiros, L. Tolos, M. Centelles, A. Ramos, and V. Dexheimer, Astrophys. J. 863, 104 (2018), arXiv:1804.00334 [astro-ph.HE]. [78] S. Tsiopelas and V. Sagun, Particles 3, 693 (2020), arXiv:2006.06351 [astro-ph.HE]. [79] S. Tsiopelas and V. Sagun, Astron. Nachr. 342, 332 (2021). [80] A. Schwenk, B. Friman, and G. E. Brown, Nucl. Phys. A 713, 191 (2003), arXiv:nucl-th/0207004. [81] J. M. C. Chen, J. W. Clark, R. D. Dav´e, and V. V. Khodel, Nucl. Phys. A 555, 59 (1993). [82] V. Sagun, E. Giangrandi, T. Dietrich, O. Ivanyt- 11 skyi, R. Negreiros, and C. Providˆencia, (2023), arXiv:2306.12326 [astro-ph.HE]. [83] W. C. G. Ho and C. O. Heinke, Nature 462, 71 (2009), arXiv:0911.0672 [astro-ph.HE]. [84] C. O. Heinke and W. C. G. Ho, Astrophys. J. Lett. 719, L167 (2010), arXiv:1007.4719 [astro-ph.HE]. [85] P. S. Shternin, D. G. Yakovlev, C. O. Heinke, W. C. G. Ho, and D. J. Patnaude, Mon. Not. Roy. Astron. Soc. 412, L108 (2011), arXiv:1012.0045 [astro-ph.SR]. [86] K. G. Elshamouty, C. O. Heinke, G. R. Sivakoff, W. C. G. Ho, P. S. Shternin, D. G. Yakovlev, D. J. Patnaude, and L. David, Astrophys. J. 777, 22 (2013), arXiv:1306.3387 [astro-ph.HE]. [87] M. J. P. Wijngaarden, W. C. G. Ho, P. Chang, C. O. Heinke, D. Page, M. Beznogov, and D. J. Patnaude, Mon. Not. Roy. Astron. Soc. 484, 974 (2019), arXiv:1901.01012 [astro-ph.HE]. [88] P. S. Shternin, D. D. Ofengeim, C. O. Heinke, and W. C. G. Ho, Mon. Not. Roy. Astron. Soc. 518, 2775 (2022), arXiv:2211.02526 [astro-ph.HE]. [89] D. Page, M. Prakash, J. M. Lattimer, and A. W. Steiner, Phys. Rev. Lett. 106, 081101 (2011), arXiv:1011.6142 [astro-ph.HE]. [90] G. Taranto, G. F. Burgio, and H. J. Schulze, Mon. Not. Roy. Astron. Soc. 456, 1451 (2016), arXiv:1511.04243 [nucl-th]. [91] D. Blaschke, H. Grigorian, D. N. Voskresensky, and F. Weber, Phys. Rev. C 85, 022802 (2012), arXiv:1108.4125 [nucl-th]. [92] K. Hamaguchi, N. Nagata, K. Yanagi, and J. Zheng, Phys. Rev. D 98, 103015 (2018), arXiv:1806.07151 [hepph]. [93] T. Takatsuka, Progress of Theoretical Physics 48, 1517 (1972), https://academic.oup.com/ptp/articlepdf/48/5/1517/5328994/48-5-1517.pdf. [94] R. Cassano et al., arXiv (2018), arXiv:1807.09080 [astroph.HE]. [95] J. J. M. in ’t Zand et al. (eXTP), Sci. China Phys. Mech. Astron. 62, 029506 (2019), arXiv:1812.04023 [astroph.HE]. [96] P. S. Ray et al. (STROBE-X Science Working Group), arxiv (2019), arXiv:1903.03035 [astro-ph.IM].

Abstract
Introduction
Conclusion
References

All Products

bottom of page